ﻻ يوجد ملخص باللغة العربية
Federated learning (FL) has recently emerged as a new form of collaborative machine learning, where a common model can be learned while keeping all the training data on local devices. Although it is designed for enhancing the data privacy, we demonstrated in this paper a new direction in inference attacks in the context of FL, where valuable information about training data can be obtained by adversaries with very limited power. In particular, we proposed three new types of attacks to exploit this vulnerability. The first type of attack, Class Sniffing, can detect whether a certain label appears in training. The other two types of attacks can determine the quantity of each label, i.e., Quantity Inference attack determines the composition proportion of the training label owned by the selected clients in a single round, while Whole Determination attack determines that of the whole training process. We evaluated our attacks on a variety of tasks and datasets with different settings, and the corresponding results showed that our attacks work well generally. Finally, we analyzed the impact of major hyper-parameters to our attacks and discussed possible defenses.
How can we debug a logistical regression model in a federated learning setting when seeing the model behave unexpectedly (e.g., the model rejects all high-income customers loan applications)? The SQL-based training data debugging framework has proved
We consider learning a multi-class classification model in the federated setting, where each user has access to the positive data associated with only a single class. As a result, during each federated learning round, the users need to locally update
Recommender systems are commonly trained on centrally collected user interaction data like views or clicks. This practice however raises serious privacy concerns regarding the recommenders collection and handling of potentially sensitive data. Severa
Federated Learning (FL) is a promising machine learning paradigm that enables the analyzer to train a model without collecting users raw data. To ensure users privacy, differentially private federated learning has been intensively studied. The existi
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data d