ترغب بنشر مسار تعليمي؟ اضغط هنا

TruNet: Short Videos Generation from Long Videos via Story-Preserving Truncation

98   0   0.0 ( 0 )
 نشر من قبل Dongliang He
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we introduce a new problem, named as {em story-preserving long video truncation}, that requires an algorithm to automatically truncate a long-duration video into multiple short and attractive sub-videos with each one containing an unbroken story. This differs from traditional video highlight detection or video summarization problems in that each sub-video is required to maintain a coherent and integral story, which is becoming particularly important for resource-production video sharing platforms such as Youtube, Facebook, TikTok, Kwai, etc. To address the problem, we collect and annotate a new large video truncation dataset, named as TruNet, which contains 1470 videos with on average 11 short stories per video. With the new dataset, we further develop and train a neural architecture for video truncation that consists of two components: a Boundary Aware Network (BAN) and a Fast-Forward Long Short-Term Memory (FF-LSTM). We first use the BAN to generate high quality temporal proposals by jointly considering frame-level attractiveness and boundaryness. We then apply the FF-LSTM, which tends to capture high-order dependencies among a sequence of frames, to decide whether a temporal proposal is a coherent and integral story. We show that our proposed framework outperforms existing approaches for the story-preserving long video truncation problem in both quantitative measures and user-study. The dataset is available for public academic research usage at https://ai.baidu.com/broad/download.



قيم البحث

اقرأ أيضاً

84 - Zihao Jian , Minshan Xie 2021
3D face reconstruction and face alignment are two fundamental and highly related topics in computer vision. Recently, some works start to use deep learning models to estimate the 3DMM coefficients to reconstruct 3D face geometry. However, the perform ance is restricted due to the limitation of the pre-defined face templates. To address this problem, some end-to-end methods, which can completely bypass the calculation of 3DMM coefficients, are proposed and attract much attention. In this report, we introduce and analyse three state-of-the-art methods in 3D face reconstruction and face alignment. Some potential improvement on PRN are proposed to further enhance its accuracy and speed.
In this paper, we introduce a new problem of manipulating a given video by inserting other videos into it. Our main task is, given an object video and a scene video, to insert the object video at a user-specified location in the scene video so that t he resulting video looks realistic. We aim to handle different object motions and complex backgrounds without expensive segmentation annotations. As it is difficult to collect training pairs for this problem, we synthesize fake training pairs that can provide helpful supervisory signals when training a neural network with unpaired real data. The proposed network architecture can take both real and fake pairs as input and perform both supervised and unsupervised training in an adversarial learning scheme. To synthesize a realistic video, the network renders each frame based on the current input and previous frames. Within this framework, we observe that injecting noise into previous frames while generating the current frame stabilizes training. We conduct experiments on real-world videos in object tracking and person re-identification benchmark datasets. Experimental results demonstrate that the proposed algorithm is able to synthesize long sequences of realistic videos with a given object video inserted.
Learning visual knowledge from massive weakly-labeled web videos has attracted growing research interests thanks to the large corpus of easily accessible video data on the Internet. However, for video action recognition, the action of interest might only exist in arbitrary clips of untrimmed web videos, resulting in high label noises in the temporal space. To address this issue, we introduce a new method for pre-training video action recognition models using queried web videos. Instead of trying to filter out, we propose to convert the potential noises in these queried videos to useful supervision signals by defining the concept of Sub-Pseudo Label (SPL). Specifically, SPL spans out a new set of meaningful middle ground label space constructed by extrapolating the original weak labels during video querying and the prior knowledge distilled from a teacher model. Consequently, SPL provides enriched supervision for video models to learn better representations. SPL is fairly simple and orthogonal to popular teacher-student self-training frameworks without extra training cost. We validate the effectiveness of our method on four video action recognition datasets and a weakly-labeled image dataset to study the generalization ability. Experiments show that SPL outperforms several existing pre-training strategies using pseudo-labels and the learned representations lead to competitive results when fine-tuning on HMDB-51 and UCF-101 compared with recent pre-training methods.
Recent advances in image-based human pose estimation make it possible to capture 3D human motion from a single RGB video. However, the inherent depth ambiguity and self-occlusion in a single view prohibit the recovery of as high-quality motion as mul ti-view reconstruction. While multi-view videos are not common, the videos of a celebrity performing a specific action are usually abundant on the Internet. Even if these videos were recorded at different time instances, they would encode the same motion characteristics of the person. Therefore, we propose to capture human motion by jointly analyzing these Internet videos instead of using single videos separately. However, this new task poses many new challenges that cannot be addressed by existing methods, as the videos are unsynchronized, the camera viewpoints are unknown, the background scenes are different, and the human motions are not exactly the same among videos. To address these challenges, we propose a novel optimization-based framework and experimentally demonstrate its ability to recover much more precise and detailed motion from multiple videos, compared against monocular motion capture methods.
129 - Wei Lu , Lingyi Liu , Junwei Luo 2021
With the rapid progress of deepfake techniques in recent years, facial video forgery can generate highly deceptive video contents and bring severe security threats. And detection of such forgery videos is much more urgent and challenging. Most existi ng detection methods treat the problem as a vanilla binary classification problem. In this paper, the problem is treated as a special fine-grained classification problem since the differences between fake and real faces are very subtle. It is observed that most existing face forgery methods left some common artifacts in the spatial domain and time domain, including generative defects in the spatial domain and inter-frame inconsistencies in the time domain. And a spatial-temporal model is proposed which has two components for capturing spatial and temporal forgery traces in global perspective respectively. The two components are designed using a novel long distance attention mechanism. The one component of the spatial domain is used to capture artifacts in a single frame, and the other component of the time domain is used to capture artifacts in consecutive frames. They generate attention maps in the form of patches. The attention method has a broader vision which contributes to better assembling global information and extracting local statistic information. Finally, the attention maps are used to guide the network to focus on pivotal parts of the face, just like other fine-grained classification methods. The experimental results on different public datasets demonstrate that the proposed method achieves the state-of-the-art performance, and the proposed long distance attention method can effectively capture pivotal parts for face forgery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا