ﻻ يوجد ملخص باللغة العربية
The $Gamma $-limit of a family of functionals $umapsto int_{Omega }fleft( frac{x}{varepsilon },frac{x}{varepsilon ^{2}},D^{s}uright) dx$ is obtained for $s=1,2$ and when the integrand $f=fleft( y,z,vright) $ is a continous function, periodic in $y$ and $z$ and convex with respect to $v$ with nonstandard growth. The reiterated two-scale limits of second order derivative are characterized in this setting.
We consider shape optimization problems for general integral functionals of the calculus of variations, defined on a domain $Omega$ that varies over all subdomains of a given bounded domain $D$ of ${bf R}^d$. We show in a rather elementary way the ex
We consider shape optimization problems for general integral functionals of the calculus of variations that may contain a boundary term. In particular, this class includes optimization problems governed by elliptic equations with a Robin condition on
We provide relaxation for not lower semicontinuous supremal functionals of the type $W^{1,infty}(Omega;mathbb R^d) i u mapstosupess_{ x in Omega}f( abla u(x))$ in the vectorial case, where $Omegasubset mathbb R^N$ is a Lipschitz, bounded open set, a
Let $H(q,p)$ be a Hamiltonian on $T^*T^n$. We show that the sequence $H_{k}(q,p)=H(kq,p)$ converges for the $gamma$ topology defined by the author, to $bar{H}(p)$. This is extended to the case where only some of the variables are homogenized, that is
In this paper we build up a criteria for fractional Orlicz-Sobolev extension and imbedding domains on Ahlfors $n$-regular domains.