ترغب بنشر مسار تعليمي؟ اضغط هنا

VATEX Captioning Challenge 2019: Multi-modal Information Fusion and Multi-stage Training Strategy for Video Captioning

118   0   0.0 ( 0 )
 نشر من قبل Ziqi Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-modal information is essential to describe what has happened in a video. In this work, we represent videos by various appearance, motion and audio information guided with video topic. By following multi-stage training strategy, our experiments show steady and significant improvement on the VATEX benchmark. This report presents an overview and comparative analysis of our system designed for both Chinese and English tracks on VATEX Captioning Challenge 2019.



قيم البحث

اقرأ أيضاً

This report describes our solution for the VATEX Captioning Challenge 2020, which requires generating descriptions for the videos in both English and Chinese languages. We identified three crucial factors that improve the performance, namely: multi-v iew features, hybrid reward, and diverse ensemble. Based on our method of VATEX 2019 challenge, we achieved significant improvements this year with more advanced model architectures, combination of appearance and motion features, and careful hyper-parameters tuning. Our method achieves very competitive results on both of the Chinese and English video captioning tracks.
Video captioning in essential is a complex natural process, which is affected by various uncertainties stemming from video content, subjective judgment, etc. In this paper we build on the recent progress in using encoder-decoder framework for video c aptioning and address what we find to be a critical deficiency of the existing methods, that most of the decoders propagate deterministic hidden states. Such complex uncertainty cannot be modeled efficiently by the deterministic models. In this paper, we propose a generative approach, referred to as multi-modal stochastic RNNs networks (MS-RNN), which models the uncertainty observed in the data using latent stochastic variables. Therefore, MS-RNN can improve the performance of video captioning, and generate multiple sentences to describe a video considering different random factors. Specifically, a multi-modal LSTM (M-LSTM) is first proposed to interact with both visual and textual features to capture a high-level representation. Then, a backward stochastic LSTM (S-LSTM) is proposed to support uncertainty propagation by introducing latent variables. Experimental results on the challenging datasets MSVD and MSR-VTT show that our proposed MS-RNN approach outperforms the state-of-the-art video captioning benchmarks.
While many BERT-based cross-modal pre-trained models produce excellent results on downstream understanding tasks like image-text retrieval and VQA, they cannot be applied to generation tasks directly. In this paper, we propose XGPT, a new method of C ross-modal Generative Pre-Training for Image Captioning that is designed to pre-train text-to-image caption generators through three novel generation tasks, including Image-conditioned Masked Language Modeling (IMLM), Image-conditioned Denoising Autoencoding (IDA), and Text-conditioned Image Feature Generation (TIFG). As a result, the pre-trained XGPT can be fine-tuned without any task-specific architecture modifications to create state-of-the-art models for image captioning. Experiments show that XGPT obtains new state-of-the-art results on the benchmark datasets, including COCO Captions and Flickr30k Captions. We also use XGPT to generate new image captions as data augmentation for the image retrieval task and achieve significant improvement on all recall metrics.
Medical image captioning automatically generates a medical description to describe the content of a given medical image. A traditional medical image captioning model creates a medical description only based on a single medical image input. Hence, an abstract medical description or concept is hard to be generated based on the traditional approach. Such a method limits the effectiveness of medical image captioning. Multi-modal medical image captioning is one of the approaches utilized to address this problem. In multi-modal medical image captioning, textual input, e.g., expert-defined keywords, is considered as one of the main drivers of medical description generation. Thus, encoding the textual input and the medical image effectively are both important for the task of multi-modal medical image captioning. In this work, a new end-to-end deep multi-modal medical image captioning model is proposed. Contextualized keyword representations, textual feature reinforcement, and masked self-attention are used to develop the proposed approach. Based on the evaluation of the existing multi-modal medical image captioning dataset, experimental results show that the proposed model is effective with the increase of +53.2% in BLEU-avg and +18.6% in CIDEr, compared with the state-of-the-art method.
Video captioning targets interpreting the complex visual contents as text descriptions, which requires the model to fully understand video scenes including objects and their interactions. Prevailing methods adopt off-the-shelf object detection networ ks to give object proposals and use the attention mechanism to model the relations between objects. They often miss some undefined semantic concepts of the pretrained model and fail to identify exact predicate relationships between objects. In this paper, we investigate an open research task of generating text descriptions for the given videos, and propose Cross-Modal Graph (CMG) with meta concepts for video captioning. Specifically, to cover the useful semantic concepts in video captions, we weakly learn the corresponding visual regions for text descriptions, where the associated visual regions and textual words are named cross-modal meta concepts. We further build meta concept graphs dynamically with the learned cross-modal meta concepts. We also construct holistic video-level and local frame-level video graphs with the predicted predicates to model video sequence structures. We validate the efficacy of our proposed techniques with extensive experiments and achieve state-of-the-art results on two public datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا