ﻻ يوجد ملخص باللغة العربية
We consider the problem of efficiently simulating random quantum states and random unitary operators, in a manner which is convincing to unbounded adversaries with black-box oracle access. This problem has previously only been considered for restricted adversaries. Against adversaries with an a priori bound on the number of queries, it is well-known that $t$-designs suffice. Against polynomial-time adversaries, one can use pseudorandom states (PRS) and pseudorandom unitaries (PRU), as defined in a recent work of Ji, Liu, and Song; unfortunately, no provably secure construction is known for PRUs. In our setting, we are concerned with unbounded adversaries. Nonetheless, we are able to give stateful quantum algorithms which simulate the ideal object in both settings of interest. In the case of Haar-random states, our simulator is polynomial-time, has negligible error, and can also simulate verification and reflection through the simulated state. This yields an immediate application to quantum money: a money scheme which is information-theoretically unforgeable and untraceable. In the case of Haar-random unitaries, our simulator takes polynomial space, but simulates both forward and inverse access with zero error. These results can be seen as the first significant steps in developing a theory of lazy sampling for random quantum objects.
We prove a quantum information-theoretic conjecture due to Ji, Liu and Song (CRYPTO 2018) which suggested that a uniform superposition with random emph{binary} phase is statistically indistinguishable from a Haar random state. That is, any polynomial
We numerically investigate the implementation of Haar-random unitarity transformations and Fourier transformations in photonic devices consisting of beam splitters and phase shifters, which are used for integrated photonics implementations of boson s
We review the generation of random pure states using a protocol of repeated two qubit gates. We study the dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the optimal generation of such states i
The study of properties of randomly chosen quantum states has in recent years led to many insights into quantum entanglement. In this work, we study private quantum states from this point of view. Private quantum states are bipartite quantum states c
Mana is a measure of the amount of non-Clifford resources required to create a state; the mana of a mixed state on $ell$ qudits bounded by $le frac 1 2 (ell ln d - S_2)$; $S_2$ the states second Renyi entropy. We compute the mana of Haar-random pure