In the $d$-Scattered Set problem we are asked to select at least $k$ vertices of a given graph, so that the distance between any pair is at least $d$. We study the problems (in-)approximability and offer improvements and extensions of known results for Independent Set, of which the problem is a generalization. Specifically, we show: - A lower bound of $Delta^{lfloor d/2rfloor-epsilon}$ on the approximation ratio of any polynomial-time algorithm for graphs of maximum degree $Delta$ and an improved upper bound of $O(Delta^{lfloor d/2rfloor})$ on the approximation ratio of any greedy scheme for this problem. - A polynomial-time $2sqrt{n}$-approximation for bipartite graphs and even values of $d$, that matches the known lower bound by considering the only remaining case. - A lower bound on the complexity of any $rho$-approximation algorithm of (roughly) $2^{frac{n^{1-epsilon}}{rho d}}$ for even $d$ and $2^{frac{n^{1-epsilon}}{rho(d+rho)}}$ for odd $d$ (under the randomized ETH), complemented by $rho$-approximation algorithms of running times that (almost) match these bounds.