ترغب بنشر مسار تعليمي؟ اضغط هنا

MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction

128   0   0.0 ( 0 )
 نشر من قبل Yuning Chai
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicting human behavior is a difficult and crucial task required for motion planning. It is challenging in large part due to the highly uncertain and multi-modal set of possible outcomes in real-world domains such as autonomous driving. Beyond single MAP trajectory prediction, obtaining an accurate probability distribution of the future is an area of active interest. We present MultiPath, which leverages a fixed set of future state-sequence anchors that correspond to modes of the trajectory distribution. At inference, our model predicts a discrete distribution over the anchors and, for each anchor, regresses offsets from anchor waypoints along with uncertainties, yielding a Gaussian mixture at each time step. Our model is efficient, requiring only one forward inference pass to obtain multi-modal future distributions, and the output is parametric, allowing compact communication and analytical probabilistic queries. We show on several datasets that our model achieves more accurate predictions, and compared to sampling baselines, does so with an order of magnitude fewer trajectories.



قيم البحث

اقرأ أيضاً

Naturalistic driving trajectories are crucial for the performance of autonomous driving algorithms. However, most of the data is collected in safe scenarios leading to the duplication of trajectories which are easy to be handled by currently develope d algorithms. When considering safety, testing algorithms in near-miss scenarios that rarely show up in off-the-shelf datasets is a vital part of the evaluation. As a remedy, we propose a near-miss data synthesizing framework based on Variational Bayesian methods and term it as Conditional Multiple Trajectory Synthesizer (CMTS). We leverage a generative model conditioned on road maps to bridge safe and collision driving data by representing their distribution in the latent space. By sampling from the near-miss distribution, we can synthesize safety-critical data crucial for understanding traffic scenarios but not shown in neither the original dataset nor the collision dataset. Our experimental results demonstrate that the augmented dataset covers more kinds of driving scenarios, especially the near-miss ones, which help improve the trajectory prediction accuracy and the capability of dealing with risky driving scenarios.
Behavior prediction of traffic actors is an essential component of any real-world self-driving system. Actors long-term behaviors tend to be governed by their interactions with other actors or traffic elements (traffic lights, stop signs) in the scen e. To capture this highly complex structure of interactions, we propose to use a hybrid graph whose nodes represent both the traffic actors as well as the static and dynamic traffic elements present in the scene. The different modes of temporal interaction (e.g., stopping and going) among actors and traffic elements are explicitly modeled by graph edges. This explicit reasoning about discrete interaction types not only helps in predicting future motion, but also enhances the interpretability of the model, which is important for safety-critical applications such as autonomous driving. We predict actors trajectories and interaction types using a graph neural network, which is trained in a semi-supervised manner. We show that our proposed model, TrafficGraphNet, achieves state-of-the-art trajectory prediction accuracy while maintaining a high level of interpretability.
Predicting the future motion of vehicles has been studied using various techniques, including stochastic policies, generative models, and regression. Recent work has shown that classification over a trajectory set, which approximates possible motions , achieves state-of-the-art performance and avoids issues like mode collapse. However, map information and the physical relationships between nearby trajectories is not fully exploited in this formulation. We build on classification-based approaches to motion prediction by adding an auxiliary loss that penalizes off-road predictions. This auxiliary loss can easily be pretrained using only map information (e.g., off-road area), which significantly improves performance on small datasets. We also investigate weighted cross-entropy losses to capture spatial-temporal relationships among trajectories. Our final contribution is a detailed comparison of classification and ordinal regression on two public self-driving datasets.
Self-driving vehicles plan around both static and dynamic objects, applying predictive models of behavior to estimate future locations of the objects in the environment. However, future behavior is inherently uncertain, and models of motion that prod uce deterministic outputs are limited to short timescales. Particularly difficult is the prediction of human behavior. In this work, we propose the discrete residual flow network (DRF-Net), a convolutional neural network for human motion prediction that captures the uncertainty inherent in long-range motion forecasting. In particular, our learned network effectively captures multimodal posteriors over future human motion by predicting and updating a discretized distribution over spatial locations. We compare our model against several strong competitors and show that our model outperforms all baselines.
We present CoverNet, a new method for multimodal, probabilistic trajectory prediction for urban driving. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead fram e the trajectory prediction problem as classification over a diverse set of trajectories. The size of this set remains manageable due to the limited number of distinct actions that can be taken over a reasonable prediction horizon. We structure the trajectory set to a) ensure a desired level of coverage of the state space, and b) eliminate physically impossible trajectories. By dynamically generating trajectory sets based on the agents current state, we can further improve our methods efficiency. We demonstrate our approach on public, real-world self-driving datasets, and show that it outperforms state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا