ترغب بنشر مسار تعليمي؟ اضغط هنا

A Heuristic for Maximizing the Lifetime of Data Aggregation in Wireless Sensor Networks

56   0   0.0 ( 0 )
 نشر من قبل Tu Nguyen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, many researchers have studied efficiently gathering data in wireless sensor networks to minimize the total energy consumption when a fixed number of data are allowed to be aggregated into one packet. However, minimizing the total energy consumption does not imply the network lifetime is maximized. In this paper, we study the problem of scheduling data aggregation trees working for different time periods to maximize the network lifetime when a fixed number of data are allowed to be aggregated into one packet. In addition, we propose a heuristic to balance the lifetime of nodes in data aggregation trees such that the network lifetime is maximized. Simulation results show that the proposed heuristic provides a good performance.



قيم البحث

اقرأ أيضاً

In many applications, it is a basic operation for the sink to periodically collect reports from all sensors. Since the data gathering process usually proceeds for many rounds, it is important to collect these data efficiently, that is, to reduce the energy cost of data transmission. Under such applications, a tree is usually adopted as the routing structure to save the computation costs for maintaining the routing tables of sensors. In this paper, we work on the problem of constructing a data aggregation tree that minimizes the total energy cost of data transmission in a wireless sensor network. In addition, we also address such a problem in the wireless sensor network where relay nodes exist. We show these two problems are NP-complete, and propose O(1)-approximation algorithms for each of them. Simulations show that the proposed algorithms each have good performance in terms of the energy cost.
Data aggregation in wireless sensor networks refers to acquiring the sensed data from the sensors to the gateway node. It reduces the amount of power consumed during data transmission between the sensor nodes. Generally homomorphic encryptions have b een applied to conceal communication during aggregation. Since enciphered data can be aggregated algebraically without decryption. Here adversaries are able to forge aggregated results by compromising them. However, these schemes are not satisfying multi-application environments, provide insecure transmission and do not provide secure counting for unauthorized aggregation attacks. In this paper, we propose a new concealed data aggregation scheme extended from homomorphic privacy encryption system. The proposed scheme designed for a multi-application environment, mitigates the impact of compromising attacks in single application environments and also it can avoid the damage from unauthorized aggregations by the privacy homomorphic encryption scheme.
147 - Qiao Li , Yifei Wei , Mei Song 2016
An energy cooperation policy for energy harvesting wireless sensor networks (WSNs) with wireless power transfer is proposed in this paper to balance the energy at each sensor node and increase the total energy utilization ratio of the whole WSNs. Con sidering the unbalanced spatio-temporal properties of the energy supply across the deployment terrain of energy harvesting WSNs and the dynamic traffic load at each sensor node, the energy cooperation problem among sensor nodes is decomposed into two steps: the local energy storage at each sensor node based on its traffic load to meet its own needs; within the energy storage procedure sensor nodes with excess energy transmit a part of their energy to nodes with energy shortage through the energy trading. Inventory theory and game theory are respectively applied to solving the local energy storage problem at each sensor node and the energy trading problem among multiple sensor nodes. Numerical results show that compared with the static energy cooperation method without energy trading, the Stackelberg Model based Game we design in this paper can significantly improve the trading volume of energy thereby increasing the utilization ratio of the harvested energy which is unevenly distributed in the WSNs.
Congestion control and avoidance in Wireless Sensor Networks (WSNs) is a subject that has attracted a lot of research attention in the last decade. Besides rate and resource control, the utilization of mobile nodes has also been suggested as a way to control congestion. In this work, we present a Mobile Congestion Control (MobileCC) algorithm with two variations, to assist existing congestion control algorithms in facing congestion in WSNs. The first variation employs mobile nodes that create locally-significant alternative paths leading to the sink. The second variation employs mobile nodes that create completely individual (disjoint) paths to the sink. Simulation results show that both variations can significantly contribute to the alleviation of congestion in WSNs.
We investigate the condition on transmission radius needed to achieve connectivity in duty-cycled wireless sensor networks (briefly, DC-WSN). First, we settle a conjecture of Das et. al. (2012) and prove that the connectivity condition on Random Geom etric Graphs (RGG), given by Gupta and Kumar (1989), can be used to derive a weak sufficient condition to achieve connectivity in DC-WSN. To find a stronger result, we define a new vertex-based random connection model which is of independent interest. Following a proof technique of Penrose (1991) we prove that when the density of the nodes approaches infinity then a finite component of size greater than 1 exists with probability 0 in this model. We use this result to obtain an optimal condition on node transmission radius which is both necessary and sufficient to achieve connectivity and is hence optimal. The optimality of such a radius is also tested via simulation for two specific duty-cycle schemes, called the contiguous and the random selection duty-cycle scheme. Finally, we design a minimum-radius duty-cycling scheme that achieves connectivity with a transmission radius arbitrarily close to the one required in Random Geometric Graphs. The overhead in this case is that we have to spend some time computing the schedule.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا