ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical complexity in high-mass star formation: An observational and modeling case study of the AFGL 2591 VLA 3 hot core

93   0   0.0 ( 0 )
 نشر من قبل Caroline Gieser
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed observational and modeling study of the hot core VLA 3 in the high-mass star-forming region AFGL 2591, which is a target region of the NOrthern Extended Millimeter Array (NOEMA) large program CORE. Using NOEMA observations at 1.37 mm with an angular resolution of ~0.42 (1 400 au at 3.33 kpc), we derived the physical and chemical structure of the source. We modeled the observed molecular abundances with the chemical evolution code MUSCLE (MUlti Stage ChemicaL codE). Results. With the kinetic temperature tracers CH3CN and H2CO we observe a temperature distribution with a power-law index of q = 0.41+-0.08. Using the visibilities of the continuum emission we derive a density structure with a power-law index of p = 1.7+-0.1. The hot core spectra reveal high molecular abundances and a rich diversity in complex molecules. The majority of the molecules have an asymmetric spatial distribution around the forming protostar(s), which indicates a complex physical structure on scales < 1 400 au. Using MUSCLE, we are able to explain the observed molecular abundance of 10 out of 14 modeled species at an estimated hot core chemical age of ~21 100 years. In contrast to the observational analysis, our chemical modeling predicts a lower density power-law index of p < 1.4. Reasons for this discrepancy are discussed. Conclusions. Combining high spatial resolution observations with detailed chemical modeling allows us to derive a concise picture of the physical and chemical structure of the famous AFGL 2591 hot core. The next steps are to conduct a similar analysis for the whole CORE sample, and then use this analysis to constrain the chemical diversity in high-mass star formation to a much greater depth.



قيم البحث

اقرأ أيضاً

90 - S. Suri , H. Beuther , C. Gieser 2021
Increasing evidence suggests that, similar to their low-mass counterparts, high-mass stars form through a disk-mediated accretion process. At the same time, formation of high-mass stars still necessitates high accretion rates, and hence, high gas den sities, which in turn can cause disks to become unstable against gravitational fragmentation. We study the kinematics and fragmentation of the disk around the high-mass star forming region AFGL 2591-VLA 3 which was hypothesized to be fragmenting based on the observations that show multiple outflow directions. We use a new set of high-resolution (0.19 arcsec) IRAM/NOEMA observations at 843 micron towards VLA 3 which allow us to resolve its disk, characterize the fragmentation, and study its kinematics. In addition to the 843 micron continuum emission, our spectral setup targets warm dense gas and outflow tracers such as HCN, HC$_3$N and SO$_2$, as well as vibrationally excited HCN lines. The high resolution continuum and line emission maps reveal multiple fragments with subsolar masses within the inner 1000 AU of VLA 3. Furthermore, the velocity field of the inner disk observed at 843 micron shows a similar behavior to that of the larger scale velocity field studied in the CORE project at 1.37 mm. We present the first observational evidence for disk fragmentation towards AFGL 2591-VLA 3, a source that was thought to be a single high-mass core. While the fragments themselves are low-mass, the rotation of the disk is dominated by the protostar with a mass of 10.3$pm 1.8~M_{odot}$. These data also show that NOEMA Band 4 can obtain the highest currently achievable spatial resolution at (sub-)mm wavelengths in observations of strong northern sources.
This paper aims to investigate the hypothesis that the embedded luminous star AFGL2591-VLA3 (2.3E5Lsun at 3.33kpc) is forming according to a scaled-up version of a low-mass star formation scenario. We present multi-configuration VLA 3.6cm and 7mm, as well as CARMA C18O and 3mm continuum observations to investigate the morphology and kinematics of the ionized gas, dust, and molecular gas around AFGL2591. We also compare our results to ancillary near-IR images, and model the SED and 2MASS image profiles of AFGL2591 using a dust continuum radiative transfer code. The observed 3.6cm images uncover for the first time that the central powering source AFGL2591-VLA3 has a compact core plus collimated jet morphology, extending 4000AU eastward from the central source with an opening angle of <10deg at this radius. However, at 7mm VLA3 does not show a jet morphology, but instead compact (<500AU) emission, some of which (<0.57 mJy of 2.9mJy) is estimated to be from dust. We determine that the momentum rate of the jet is not sufficient to ionize itself via only shocks, and thus a significant portion of the emission is instead likely created in a photoionized wind. The C18O emission uncovers dense entrained material in the outflow(s) from the young stars in the region. The main features of the SED and 2MASS images of AFGL2591-VLA3 are also reproduced by our model dust geometry of a rotationally flattened envelope with and without a disk. The above results are consistent with a picture of massive star formation similar to that seen for low-mass protostars. However, within its envelope, AFGL2591-VLA3 contains at least four other young stars, constituting a small cluster. Therefore it appears that AFGL2591-VLA3 may be able to source its accreting material from a shared gas reservoir while still exhibiting the phenomena expected during the formation of low-mass stars. (Abridged)
This paper is the third in a series of ammonia multilevel imaging studies in well-known high-mass star forming regions. Using the JVLA, we have mapped the hot and dense molecular gas in W51 Main, with about 0.2 arcsec angular resolution, in five high ly-excited metastable inversion transitions of ammonia (ammonia): (J,K)=(6,6), (7,7), (9,9), (10,10), and (13,13). We have identified and characterised two main centers of high-mass star formation in W51-Main: the W51e2 complex and the W51e8 core (6 arcsec southward of W51e2). The former breaks down into three further sub-cores: W51e2-W, which surrounds the well known HC HII region, where hot ammonia is observed in absorption, and two additional dusty cores, W51e2-E (~0.8 to the East) and W51e2-NW (~1 to the North), where hot ammonia is observed in emission. The velocity maps towards the HC HII region show a clear velocity gradient that may indicate rotation, though we do not directly observe a Keplerian velocity profile. The absence of outflow and/or maser activity and the low amount of molecular gas available for accretion (~5 solar masses) with respect to the mass of the central YSO (>20 solar masses), both indicate that the central YSO has already accreted most of its final mass. On the other hand, in the nearby W51e2-E object, the relatively large amount of hot molecular gas available for accretion (~20 solar masses, within about half an arcsecond or 2500 AU), along with strong outflow and maser activity, indicates that the main accretion center in the W51e2 complex is W51e2-E rather than W51e2-W. Finally, W51e2-NW and W51e8, although less dense, are also hot cores and contain a significant amount of molecular gas (~30 and 70 solar masses, respectively). We speculate that they may host high-mass YSOs either at a previous evolutionary stage or with lower mass than W51e2-E and W51e2-W.
We present multi-epoch Very Long Baseline Array (VLBA) H$_2$O maser observations toward the massive young stellar objects (YSOs) VLA 2 and VLA 3 in the star-forming region AFGL 2591. Through these observations, we have extended the study of the evolu tion of the masers towards these objects up to a time span of $sim$ 10 yrs, measuring their radial velocities and proper motions. The H$_2$O masers in VLA 3, the most massive YSO in AFGL 2591 ($sim$ 30--40~M$_{odot}$), are grouped within projected distances of $lesssim$ 40 mas ($lesssim$ 130 AU) from VLA 3. In contrast to other H$_2$O masers in AFGL 2591, the masers associated with VLA 3 are significantly blueshifted (up to $sim$ 30 km s$^{-1}$) with respect to the velocity of the ambient molecular cloud. We find that the H$_2$O maser cluster as a whole, has moved westwards of VLA~3 between the 2001 and 2009 observations, with a proper motion of $sim$ 1.2 mas yr$^{-1}$ ($sim$ 20 km s$^{-1}$). We conclude that these masers are tracing blueshifted outflowing material, shock excited at the inner parts of a cavity seen previously in ammonia molecular lines and infrared images, and proposed to be evacuated by the outflow associated with the massive VLA 3 source. The masers in the region of VLA 2 are located at projected distances of $sim$ 0.7$$ ($sim$ 2300 AU) north from this source, with their kinematics suggesting that they are excited by a YSO other than VLA 2. This driving source has not yet been identified.
66 - F. Bosco , H. Beuther , A. Ahmadi 2019
The formation process of high-mass stars (>8M$_odot$) is poorly constrained, particularly, the effects of clump fragmentation creating multiple systems and the mechanism of mass accretion onto the cores. We study the fragmentation of dense gas clumps , and trace the circumstellar rotation and outflows by analyzing observations of the high-mass (~500M$_odot$) star-forming region IRAS 23033+5951. Using the Northern Extended Millimeter Array (NOEMA) in three configurations and the IRAM 30-m single-dish telescope at 220GHz, we probe the gas and dust emission at an angular resolution of ~0.45arcsec, corresponding to 1900au. In the mm continuum emission, we identify a protostellar cluster with at least four mm-sources, where three of them show a significantly higher peak intensity well above a signal-to-noise ratio of 100. Hierarchical fragmentation from large to small spatial scales is discussed. Two fragments are embedded in rotating structures and drive molecular outflows, traced by $^{13}$CO (2-1) emission. The velocity profiles across two of the cores are similar to Keplerian but are missing the highest velocity components close to the center of rotation, which is a common phenomena from observations like these, and other rotation scenarios are not excluded entirely. Position-velocity diagrams suggest protostellar masses of ~6 and 19M$_sun$. Rotational temperatures from fitting CH$_3$CN ($12_K-11_K$) spectra are used for estimating the gas temperature and by that the disk stability against gravitational fragmentation, utilizing Toomres $Q$ parameter. [We] identify only one candidate disk to be unstable against gravitational instability caused by axisymmetric perturbations. The dominant sources cover different evolutionary stages within the same maternal gas clump. The appearance of rotation and outflows of the cores are similar to those found in low-mass star-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا