ﻻ يوجد ملخص باللغة العربية
Semiconductor quantum dots are probably the preferred choice for interfacing anchored, matter spin qubits and flying photonic qubits. While full tomography of a flying qubit or light polarization is in general straightforward, matter spin tomography is a challenging and resource-consuming task. Here we present a novel all-optical method for conducting full tomography of quantum-dot-confined spins. Our method is applicable for electronic spin configurations such as the conduction-band electron, the valence-band hole, and for electron-hole pairs such as the bright and the dark exciton. We excite the spin qubit using short resonantly tuned, polarized optical pulse, which coherently converts the qubit to an excited qubit that decays by emitting a polarized single-photon. We perform the tomography by using two different orthogonal, linearly polarized excitations, followed by time-resolved measurements of the degree of circular polarization of the emitted light from the decaying excited qubit. We demonstrate our method on the dark exciton spin state with fidelity of 0.94, mainly limited by the accuracy of our polarization analyzers.
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogen
We present an example of quantum process tomography performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which ha
Single-qubit measurements are typically insufficient for inferring arbitrary quantum states of a multi-qubit system. We show that if the system can be fully controlled by driving a single qubit, then utilizing a local random pulse is almost always su
The tomographic reconstruction of the state of a quantum-mechanical system is an essential component in the development of quantum technologies. We present an overview of different tomographic methods for determining the quantum-mechanical density ma
Single nuclear spins in the solid state have long been envisaged as a platform for quantum computing, due to their long coherence times and excellent controllability. Measurements can be performed via localised electrons, for example those in single