ﻻ يوجد ملخص باللغة العربية
We introduce the concept of stationary graviton non-Gaussianity (nG), an observable that can be probed in terms of 3-point correlation functions of a stochastic gravitational wave (GW) background. When evaluated in momentum space, stationary nG corresponds to folded bispectra of graviton nG. We determine 3-point overlap functions for testing stationary nG with pulsar timing array GW experiments, and we obtain the corresponding optimal signal-to-noise ratio. For the first time, we consider 3-point overlap functions including scalar graviton polarizations (which can be motivated in theories of modified gravity); moreover, we also calculate 3-point overlap functions for correlating pulsar timing array with ground based GW detectors. The value of the optimal signal-to-noise ratio depends on the number and position of monitored pulsars. We build geometrical quantities characterizing how such ratio depends on the pulsar system under consideration, and we evaluate these geometrical parameters using data from the IPTA collaboration. We quantitatively show how monitoring a large number of pulsars can increase the signal-to-noise ratio associated with measurements of stationary graviton nG.
We study how to probe bispectra of stochastic gravitational waves with pulsar timing arrays. The bispectrum is a key to probe the origin of stochastic gravitational waves. In particular, the shape of the bispectrum carries valuable information of inf
The detection of a stochastic background of low-frequency gravitational waves by pulsar-timing and astrometric surveys will enable tests of gravitational theories beyond general relativity. These theories generally permit gravitational waves with non
Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive--black-hole binaries, cosmic
We explore the potential of Pulsar Timing Arrays (PTAs) such as NANOGrav, EPTA, and PPTA to detect the Stochastic Gravitational Wave Background (SGWB) in theories of massive gravity. In General Relativity, the function describing the dependence of th
We discuss the theory of pulsar-timing and astrometry probes of a stochastic gravitational-wave background with a recently developed total-angular-momentum (TAM) formalism for cosmological perturbations. We review the formalism, emphasizing in partic