ﻻ يوجد ملخص باللغة العربية
Neural backdoor attack is emerging as a severe security threat to deep learning, while the capability of existing defense methods is limited, especially for complex backdoor triggers. In the work, we explore the space formed by the pixel values of all possible backdoor triggers. An original trigger used by an attacker to build the backdoored model represents only a point in the space. It then will be generalized into a distribution of valid triggers, all of which can influence the backdoored model. Thus, previous methods that model only one point of the trigger distribution is not sufficient. Getting the entire trigger distribution, e.g., via generative modeling, is a key to effective defense. However, existing generative modeling techniques for image generation are not applicable to the backdoor scenario as the trigger distribution is completely unknown. In this work, we propose max-entropy staircase approximator (MESA), an algorithm for high-dimensional sampling-free generative modeling and use it to recover the trigger distribution. We also develop a defense technique to remove the triggers from the backdoored model. Our experiments on Cifar10/100 dataset demonstrate the effectiveness of MESA in modeling the trigger distribution and the robustness of the proposed defense method.
With the increasing popularity of graph-based learning, graph neural networks (GNNs) emerge as the essential tool for gaining insights from graphs. However, unlike the conventional CNNs that have been extensively explored and exhaustively tested, peo
Real-world datasets are often biased with respect to key demographic factors such as race and gender. Due to the latent nature of the underlying factors, detecting and mitigating bias is especially challenging for unsupervised machine learning. We pr
Learning graph generative models is a challenging task for deep learning and has wide applicability to a range of domains like chemistry, biology and social science. However current deep neural methods suffer from limited scalability: for a graph wit
Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a
We propose and study the problem of distribution-preserving lossy compression. Motivated by recent advances in extreme image compression which allow to maintain artifact-free reconstructions even at very low bitrates, we propose to optimize the rate-