ﻻ يوجد ملخص باللغة العربية
In this work, we argue that the implications of Pseudo and Quantum Random Number Generators (PRNG and QRNG) inexplicably affect the performances and behaviours of various machine learning models that require a random input. These implications are yet to be explored in Soft Computing until this work. We use a CPU and a QPU to generate random numbers for multiple Machine Learning techniques. Random numbers are employed in the random initial weight distributions of Dense and Convolutional Neural Networks, in which results show a profound difference in learning patterns for the two. In 50 Dense Neural Networks (25 PRNG/25 QRNG), QRNG increases over PRNG for accent classification at +0.1%, and QRNG exceeded PRNG for mental state EEG classification by +2.82%. In 50 Convolutional Neural Networks (25 PRNG/25 QRNG), the MNIST and CIFAR-10 problems are benchmarked, in MNIST the QRNG experiences a higher starting accuracy than the PRNG but ultimately only exceeds it by 0.02%. In CIFAR-10, the QRNG outperforms PRNG by +0.92%. The n-random split of a Random Tree is enhanced towards and new Quantum Random Tree (QRT) model, which has differing classification abilities to its classical counterpart, 200 trees are trained and compared (100 PRNG/100 QRNG). Using the accent and EEG classification datasets, a QRT seemed inferior to a RT as it performed on average worse by -0.12%. This pattern is also seen in the EEG classification problem, where a QRT performs worse than a RT by -0.28%. Finally, the QRT is ensembled into a Quantum Random Forest (QRF), which also has a noticeable effect when compared to the standard Random Forest (RF)... ABSTRACT SHORTENED DUE TO ARXIV LIMIT
We deal with randomness-quantifiers and concentrate on their ability do discern the hallmark of chaos in time-series used in connection with pseudo random number generators (PRNG). Workers in the field are motivated to use chaotic maps for generating
The problem of constructing effective statistical tests for random number generators (RNG) is considered. Currently, statistical tests for RNGs are a mandatory part of cryptographic information protection systems, but their effectiveness is mainly es
Quantum random number generators (QRNG) based on continuous variable (CV) quantum fluctuations offer great potential for their advantages in measurement bandwidth, stability and integrability. More importantly, it provides an efficient and extensible
This paper has been withdrawn by the author(s),
This is a review of pseudorandom number generators (RNGs) of the highest quality, suitable for use in the most demanding Monte Carlo calculations. All the RNGs we recommend here are based on the Kolmogorov-Anosov theory of mixing in classical mechani