ﻻ يوجد ملخص باللغة العربية
We analyze a $XXZ$ spin-1/2 chain which is driven dissipatively at its boundaries. The dissipative driving is modelled by Lindblad jump operators which only act on both boundary spins. In the limit of large dissipation, we find that the boundary spins are pinned to a certain value and at special values of the interaction anisotropy, the steady states are formed by a rank-2 mixture of helical states with opposite winding numbers. Contrarily to previous stabilization of topological states, these helical states are not protected by a gap in the spectrum of the Lindbladian. By changing the anisotropy, the transition between these steady states takes place via mixed states of higher rank. In particular, crossing the value of zero anisotropy a totally mixed state is found as the steady state. The transition between the different winding numbers via mixed states can be seen in the light of the transitions between different topological states in dissipatively driven systems. The results are obtained developing a perturbation theory in the inverse dissipative coupling strength and using the numerical exact diagonalization and matrix product state methods.
Recently significant progress has been made in $(2+1)$-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities, i.e., seemingly different field theories
We study a Hamiltonian system describing a three spin-1/2 cluster-like interaction competing with an Ising-like exchange. We show that the ground state in the cluster phase possesses symmetry protected topological order. A continuous quantum phase tr
We present strong numerical evidence for the existence of a localization-delocalization transition in the eigenstates of the 1-D Anderson model with long-range hierarchical hopping. Hierarchical models are important because of the well-known mapping
We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hunds metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density an
We numerically solve the Hubbard model on the Bethe lattice with finite coordination number $z=3$, and determine its zero-temperature phase diagram. For this purpose, we introduce and develop the `variational uniform tree state (VUTS) algorithm, a te