ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to extend the result of arXiv:1810.00823 to mixed Holder functions on $[0,1]^d$ for all $d ge 1$. In particular, we prove that by sampling an $alpha$-mixed Holder function $f : [0,1]^d rightarrow mathbb{R}$ at $sim frac{1}{varepsilon} left(log frac{1}{varepsilon} right)^d$ independent uniformly random points from $[0,1]^d$, we can construct an approximation $tilde{f}$ such that $$ |f - tilde{f}|_{L^2} lesssim varepsilon^alpha left(log textstyle{frac{1}{varepsilon}} right)^{d-1/2}, $$ with high probability.
Suppose $f : [0,1]^2 rightarrow mathbb{R}$ is a $(c,alpha)$-mixed Holder function that we sample at $l$ points $X_1,ldots,X_l$ chosen uniformly at random from the unit square. Let the location of these points and the function values $f(X_1),ldots,f(X
Let h_R denote an L ^{infty} normalized Haar function adapted to a dyadic rectangle R contained in the unit cube in dimension d. We establish a non-trivial lower bound on the L^{infty} norm of the `hyperbolic sums $$ sum _{|R|=2 ^{-n}} alpha(R) h_R (
We adapt Guths polynomial partitioning argument for the Fourier restriction problem to the context of the Kakeya problem. By writing out the induction argument as a recursive algorithm, additional multiscale geometric information is made available. T
A symmetrization inequality of Rogers and of Brascamp-Lieb-Luttinger states that for a certain class of multilinear integral expressions, among tuples of sets of prescribed Lebesgue measures, tuples of balls centered at the origin are among the maxim
Stochastic processes are proposed whose master equations coincide with classical wave, telegraph, and Klein-Gordon equations. Similar to predecessors based on the Goldstein-Kac telegraph process, the model describes the motion of particles with const