ﻻ يوجد ملخص باللغة العربية
We present a detailed study of the Orion B clouds (d~400 pc), imaged with the PACS/SPIRE cameras at 70-500 $mu$m by the Herschel Gould Belt survey (HGBS). We release new high-res. maps of column density and dust temperature. In the filamentary sub-regions NGC2023/2024, NGC2068/2071, and L1622, 1768 starless dense cores were identified, ~28-45% of which are self-gravitating prestellar cores. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was found to be $t_{rm pre}=1.7_{-0.6}^{+0.8}$ Myr. The prestellar core mass function (CMF) peaks at ~0.5 $M_odot$ and is consistent with a power law with log slope -1.27$pm$0.24 at the high-mass end, compared to the Salpeter slope of -1.35. In this region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value A_V_bg~7 mag in background visual extinction, similar to the trend observed with Herschel in other clouds. This is not a sharp threshold, but a smooth transition between a regime with very low prestellar CFE at A_V_bg<5 and a regime with higher, roughly constant CFE at A_V_bg$gtrsim$10. The total mass in the form of prestellar cores represents only ~20% of the dense molecular cloud gas at A_V_bg$gtrsim$7 mag. About 60-80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation between nearest core neighbors corresponds to the typical inner filament width of ~0.1 pc commonly observed in nearby molecular clouds. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.
The JCMT Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering propertie
We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2
The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in
This paper continues our study of the foreground population to the Orion molecular clouds. The goal is to characterize the foreground population north of NGC 1981 and to investigate the star formation history in the large Orion star-forming region. W
We present Herschel SPIRE and PACS maps of the Cepheus Flare clouds L1157, L1172, L1228, L1241, and L1251, observed by the Herschel Gould Belt Survey (HGBS) of nearby star-forming molecular clouds. Through modified blackbody fits to the SPIRE and PAC