ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward a Computational Theory of Evidence-Based Reasoning for Instructable Cognitive Agents

175   0   0.0 ( 0 )
 نشر من قبل Mihai Boicu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Evidence-based reasoning is at the core of many problem-solving and decision-making tasks in a wide variety of domains. Generalizing from the research and development of cognitive agents in several such domains, this paper presents progress toward a computational theory for the development of instructable cognitive agents for evidence-based reasoning tasks. The paper also illustrates the application of this theory to the development of four prototype cognitive agents in domains that are critical to the government and the public sector. Two agents function as cognitive assistants, one in intelligence analysis, and the other in science education. The other two agents operate autonomously, one in cybersecurity and the other in intelligence, surveillance, and reconnaissance. The paper concludes with the directions of future research on the proposed computational theory.



قيم البحث

اقرأ أيضاً

The human mind is still an unknown process of neuroscience in many aspects. Nevertheless, for decades the scientific community has proposed computational models that try to simulate their parts, specific applications, or their behavior in different s ituations. The most complete model in this line is undoubtedly the LIDA model, proposed by Stan Franklin with the aim of serving as a generic computational architecture for several applications. The present project is inspired by the LIDA model to apply it to the process of movie recommendation, the model called MIRA (Movie Intelligent Recommender Agent) presented percentages of precision similar to a traditional model when submitted to the same assay conditions. Moreover, the proposed model reinforced the precision indexes when submitted to tests with volunteers, proving once again its performance as a cognitive model, when executed with small data volumes. Considering that the proposed model achieved a similar behavior to the traditional models under conditions expected to be similar for natural systems, it can be said that MIRA reinforces the applicability of LIDA as a path to be followed for the study and generation of computational agents inspired by neural behaviors.
Modeling social interactions based on individual behavior has always been an area of interest, but prior literature generally presumes rational behavior. Thus, such models may miss out on capturing the effects of biases humans are susceptible to. Thi s work presents a method to model egocentric bias, the real-life tendency to emphasize ones own opinion heavily when presented with multiple opinions. We use a symmetric distribution centered at an agents own opinion, as opposed to the Bounded Confidence (BC) model used in prior work. We consider a game of iterated interactions where an agent cooperates based on its opinion about an opponent. Our model also includes the concept of domain-based self-doubt, which varies as the interaction succeeds or not. An increase in doubt makes an agent reduce its egocentricity in subsequent interactions, thus enabling the agent to learn reactively. The agent system is modeled with factions not having a single leader, to overcome some of the issues associated with leader-follower factions. We find that agents belonging to factions perform better than individual agents. We observe that an intermediate level of egocentricity helps the agent perform at its best, which concurs with conventional wisdom that neither overconfidence nor low self-esteem brings benefits.
The World Wide Web continues to evolve and serve as the infrastructure for carrying massive amounts of multimodal and multisensory observations. These observations capture various situations pertinent to peoples needs and interests along with all the ir idiosyncrasies. To support human-centered computing that empower people in making better and timely decisions, we look towards computation that is inspired by human perception and cognition. Toward this goal, we discuss computing paradigms of semantic computing, cognitive computing, and an emerging aspect of computing, which we call perceptual computing. In our view, these offer a continuum to make the most out of vast, growing, and diverse data pertinent to human needs and interests. We propose details of perceptual computing characterized by interpretation and exploration operations comparable to the interleaving of bottom and top brain processing. This article consists of two parts. First we describe semantic computing, cognitive computing, and perceptual computing to lay out distinctions while acknowledging their complementary capabilities. We then provide a conceptual overview of the newest of these three paradigms--perceptual computing. For further insights, we focus on an application scenario of asthma management converting massive, heterogeneous and multimodal (big) data into actionable information or smart data.
In this report a computational study of ConceptNet 4 is performed using tools from the field of network analysis. Part I describes the process of extracting the data from the SQL database that is available online, as well as how the closure of the in put among the assertions in the English language is computed. This part also performs a validation of the input as well as checks for the consistency of the entire database. Part II investigates the structural properties of ConceptNet 4. Different graphs are induced from the knowledge base by fixing different parameters. The degrees and the degree distributions are examined, the number and sizes of connected components, the transitivity and clustering coefficient, the cores, information related to shortest paths in the graphs, and cliques. Part III investigates non-overlapping, as well as overlapping communities that are found in ConceptNet 4. Finally, Part IV describes an investigation on rules.
Reinforcement learning (RL) agents in human-computer interactions applications require repeated user interactions before they can perform well. To address this cold start problem, we propose a novel approach of using cognitive models to pre-train RL agents before they are applied to real users. After briefly reviewing relevant cognitive models, we present our general methodological approach, followed by two case studies from our previous and ongoing projects. We hope this position paper stimulates conversations between RL, HCI, and cognitive science researchers in order to explore the full potential of the approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا