ﻻ يوجد ملخص باللغة العربية
We have developed and characterized a symmetry-protected superconducting qubit that offers simultaneous exponential suppression of energy decay from charge and flux noise, and dephasing from flux noise. The qubit consists of a Cooper-pair box (CPB) shunted by a superinductor, thus forming a superconducting loop. Provided the offset charge on the CPB island is an odd number of electrons, the qubit potential corresponds to that of a $cos phi / 2$ Josephson element, preserving the parity of fluxons in the loop via Aharonov-Casher interference. In this regime, the logical-state wavefunctions reside in disjoint regions of phase space, thereby ensuring the protection against energy decay. By switching the protection on, we observed a ten-fold increase of the decay time, reaching up to $100 mu mathrm{s}$. Though the qubit is sensitive to charge noise, the sensitivity is much reduced in comparison with the charge qubit, and the charge-noise-induced dephasing time of the current device exceeds $1 mu mathrm{s}$. Implementation of the full dephasing protection can be achieved in the next-generation devices by combining several $cos phi / 2$ Josephson elements in a small array.
We measure the coherence of a new superconducting qubit, the {em low-impedance flux qubit}, finding $T_2^* sim T_1 sim 1.5mu$s. It is a three-junction flux qubit, but the ratio of junction critical currents is chosen to make the qubits potential have
We demonstrate amplification of a microwave signal by a strongly driven two-level system in a coplanar waveguide resonator. The effect known from optics as dressed-state lasing is observed with a single quantum system formed by a persistent current (
We demonstrate coherent control and measurement of a superconducting qubit coupled to a superconducting coplanar waveguide resonator with a dynamically tunable qubit-cavity coupling strength. Rabi oscillations are measured for several coupling streng
Coherence of superconducting qubits can be improved by implementing designs that protect the parity of Cooper pairs on superconducting islands. Here, we introduce a parity-protected qubit based on voltage-controlled semiconductor nanowire Josephson j
We report a direct measurement of the low-frequency noise spectrum in a superconducting flux qubit. Our method uses the noise sensitivity of a free-induction Ramsey interference experiment, comprising free evolution in the presence of noise for a fix