We derive novel criteria for designing stabilizing dynamic output-feedback controllers for a class of aperiodic impulsive systems subject to a range dwell-time condition. Our synthesis conditions are formulated as clock-dependent linear matrix inequalities (LMIs) which can be solved numerically, e.g., by using matrix sum-of-squares relaxation methods. We show that our results allow us to design dynamic output-feedback controllers for aperiodic sample-data systems and illustrate the proposed approach by means of a numerical example.