ﻻ يوجد ملخص باللغة العربية
We derive novel criteria for designing stabilizing dynamic output-feedback controllers for a class of aperiodic impulsive systems subject to a range dwell-time condition. Our synthesis conditions are formulated as clock-dependent linear matrix inequalities (LMIs) which can be solved numerically, e.g., by using matrix sum-of-squares relaxation methods. We show that our results allow us to design dynamic output-feedback controllers for aperiodic sample-data systems and illustrate the proposed approach by means of a numerical example.
The dual iteration was introduced in a conference paper in 1997 by Iwasaki as an iterative and heuristic procedure for the challenging and non-convex design of static output-feedback controllers. We recall in detail its essential ingredients and go b
Control-affine output systems generically present observability singularities, i.e. inputs that make the system unobservable. This proves to be a difficulty in the context of output feedback stabilization, where this issue is usually discarded by uni
This paper studies a class of partially observed Linear Quadratic Gaussian (LQG) problems with unknown dynamics. We establish an end-to-end sample complexity bound on learning a robust LQG controller for open-loop stable plants. This is achieved usin
Output feedback stabilization of control systems is a crucial issue in engineering. Most of these systems are not uniformly observable, which proves to be a difficulty to move from state feedback stabilization to dynamic output feedback stabilization
This paper addresses the problem of positive consensus of directed multi-agent systems with observer-type output-feedback protocols. More specifically, directed graph is used to model the communication topology of the multi-agent system and linear ma