ترغب بنشر مسار تعليمي؟ اضغط هنا

The String Geometry Behind Topological Amplitudes

103   0   0.0 ( 0 )
 نشر من قبل Carlo Angelantonj
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that the generating function of $mathscr{N}=2$ topological strings, in the heterotic weak coupling limit, is identified with the partition function of a six-dimensional Melvin background. This background, which corresponds to an exact CFT, realises in string theory the six-dimensional $varOmega$-background of Nekrasov, in the case of opposite deformation parameters $epsilon_1=-epsilon_2$, thus providing the known perturbative part of the Nekrasov partition function in the field theory limit. The analysis is performed on both heterotic and type I strings and for the cases of ordinary $mathscr{N}=2$ and $mathscr{N}=2^*$ theories.



قيم البحث

اقرأ أيضاً

We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straig htforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of $SL(2,{mathbb Z})$) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of an hyperbolic three-geometry associated with $q$-series in the computation of the string amplitudes.
The topological string captures certain superstring amplitudes which are also encoded in the underlying string effective action. However, unlike the topological string free energy, the effective action that comprises higher-order derivative couplings is not defined in terms of duality covariant variables. This puzzle is resolved in the context of real special geometry by introducing the so-called Hesse potential, which is defined in terms of duality covariant variables and is related by a Legendre transformation to the function that encodes the effective action. It is demonstrated that the Hesse potential contains a unique subsector that possesses all the characteristic properties of a topological string free energy. Genus $gleq3$ contributions are constructed explicitly for a general class of effective actions associated with a special-Kahler target space and are shown to satisfy the holomorphic anomaly equation of perturbative type-II topological string theory. This identification of a topological string free energy from an effective action is primarily based on conceptual arguments and does not involve any of its more specific properties. It is fully consistent with known results. A general theorem is presented that captures some characteristic features of the equivalence, which demonstrates at the same time that non-holomorphic deformations of special geometry can be dealt with consistently.
We present the most complete list of mirror pairs of Calabi-Yau complete intersections in toric ambient varieties and develop the methods to solve the topological string and to calculate higher genus amplitudes on these compact Calabi-Yau spaces. The se symplectic invariants are used to remove redundancies in examples. The construction of the B-model propagators leads to compatibility conditions, which constrain multi-parameter mirror maps. For K3 fibered Calabi-Yau spaces without reducible fibers we find closed formulas for all genus contributions in the fiber direction from the geometry of the fibration. If the heterotic dual to this geometry is known, the higher genus invariants can be identified with the degeneracies of BPS states contributing to gravitational threshold corrections and all genus checks on string duality in the perturbative regime are accomplished. We find, however, that the BPS degeneracies do not uniquely fix the non-perturbative completion of the heterotic string. For these geometries we can write the topological partition function in terms of the Donaldson-Thomas invariants and we perform a non-trivial check of S-duality in topological strings. We further investigate transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2 quotients that lead to a new class of heterotic duals.
We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the coventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.
In this paper we provide a first attempt towards a toric geometric interpretation of scattering amplitudes. In recent investigations it has indeed been proposed that the all-loop integrand of planar N=4 SYM can be represented in terms of well defined finite objects called on-shell diagrams drawn on disks. Furthermore it has been shown that the physical information of on-shell diagrams is encoded in the geometry of auxiliary algebraic varieties called the totally non negative Grassmannians. In this new formulation the infinite dimensional symmetry of the theory is manifest and many results, that are quite tricky to obtain in terms of the standard Lagrangian formulation of the theory, are instead manifest. In this paper, elaborating on previous results, we provide another picture of the scattering amplitudes in terms of toric geometry. In particular we describe in detail the toric varieties associated to an on-shell diagram, how the singularities of the amplitudes are encoded in some subspaces of the toric variety, and how this picture maps onto the Grassmannian description. Eventually we discuss the action of cluster transformations on the toric varieties. The hope is to provide an alternative description of the scattering amplitudes that could contribute in the developing of this very interesting field of research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا