ﻻ يوجد ملخص باللغة العربية
Classic dynamic data structure problems maintain a data structure subject to a sequence S of updates and they answer queries using the latest version of the data structure, i.e., the data structure after processing the whole sequence. To handle operations that change the sequence S of updates, Demaine et al. (TALG 2007) introduced retroactive data structures. A retroactive operation modifies the update sequence S in a given position t, called time, and either creates or cancels an update in S at time t. A partially retroactive data structure restricts queries to be executed exclusively in the latest version of the data structure. A fully retroactive data structure supports queries at any time t: a query at time t is answered using only the updates of S up to time t. If the sequence S only consists of insertions, the resulting data structure is an incremental retroactive data structure. While efficient retroactive data structures have been proposed for classic data structures, e.g., stack, priority queue and binary search tree, the retroactive version of graph problems are rarely studied. In this paper we study retroactive graph problems including connectivity, minimum spanning forest (MSF), maximum degree, etc. We provide fully retroactive data structures for maintaining the maximum degree, connectivity and MSF in $tilde{O}(n)$ time per operation. We also give an algorithm for the incremental fully retroactive connectivity with $tilde{O}(1)$ time per operation. We compliment our algorithms with almost tight hardness results. We show that under the OMv conjecture (proposed by Henzinger et al. (STOC 2015)), there does not exist fully retroactive data structures maintaining connectivity or MSF, or incremental fully retroactive data structure maintaining the maximum degree with $O(n^{1-epsilon})$ time per operation, for any constant $epsilon > 0$.
The point placement problem is to determine the positions of a set of $n$ distinct points, P = {p1, p2, p3, ..., pn}, on a line uniquely, up to translation and reflection, from the fewest possible distance queries between pairs of points. Each distan
We consider a range of simply stated dynamic data structure problems on strings. An update changes one symbol in the input and a query asks us to compute some function of the pattern of length $m$ and a substring of a longer text. We give both condit
We study the space complexity of sketching cuts and Laplacian quadratic forms of graphs. We show that any data structure which approximately stores the sizes of all cuts in an undirected graph on $n$ vertices up to a $1+epsilon$ error must use $Omega
We study the quantum query complexity of two problems. First, we consider the problem of determining if a sequence of parentheses is a properly balanced one (a Dyck word), with a depth of at most $k$. We call this the $Dyck_{k,n}$ problem. We prove
We consider the problem of testing graph cluster structure: given access to a graph $G=(V, E)$, can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a ge