ﻻ يوجد ملخص باللغة العربية
We develop general tools to characterise and efficiently compute relevant observables of multimode $N$-photon states generated in non-linear decays in one-dimensional waveguides. We then consider optical interferometry in a Mach-Zender interferometer where a $d$-mode photonic state enters in each arm of the interferometer. We derive a simple expression for the Quantum Fisher Information in terms of the average photon number in each mode, and show that it can be saturated by number-resolved photon measurements that do not distinguish between the different $d$ modes.
Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with large photon number remains challenging. We present and
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of $N$ entangled photons provides up to a $sqrt{N}$ enhancement in phase sensitivity compar
We propose a class of path-entangled photon Fock states for robust quantum optical metrology, imaging, and sensing in the presence of loss. We model propagation loss with beam-splitters and derive a reduced density matrix formalism from which we exam
Probabilistic amplification through photon addition, at the output of an Mach-Zehnder interferometer is discussed for a coherent input state. When a metric of signal to noise ratio is considered, nondeterministic, noiseless amplification of a coheren
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this pap