ﻻ يوجد ملخص باللغة العربية
We demonstrate a combination of optical and electronic feedback that significantly narrows the linewidth of distributed Bragg reflector lasers (DBRs). We use optical feedback from a long external fiber path to reduce the high-frequency noise of the laser. An electro-optic modulator placed inside the optical feedback path allows us to apply electronic feedback to the laser frequency with very large bandwidth, enabling robust and stable locking to a reference cavity that suppresses low-frequency components of laser noise. The combination of optical and electronic feedback allows us to significantly lower the frequency noise power spectral density of the laser across all frequencies and narrow its linewidth from a free-running value of 1.1 MHz to a stabilized value of 1.9 kHz, limited by the detection system resolution. This approach enables the construction of robust lasers with sub-kHz linewidth based on DBRs across a broad range of wavelengths.
The coherent population trapping (CPT) atomic clock is very promising for use in next-generation spaceborne applications owing to its compactness and high performance. In this paper, we propose and implement a CPT atomic clock based on the direct mod
Plasmonic distributed-feedback lasers based on a two-dimensional periodic array of metallic nanostructures are the main candidate for nanoscale sources of coherent electromagnetic field. Strong localization of the electromagnetic field and the large
Electrically-pumped lasers directly grown on silicon are key devices interfacing silicon microelectronics and photonics. We report here, for the first time, an electrically-pumped, room-temperature, continuous-wave (CW) and single-mode distributed fe
Surface acoustic waves (SAWs) in the GHz frequency range can inject spin currents dynamically into adjacent nonmagnetic layers via spin pumping effect associated with ferromagnetic resonance. Here, we demonstrate an enhancement of acoustic ferromagne
Lasers with high spectral purity can enable a diverse application space, including precision spectroscopy, coherent high-speed communications, physical sensing, and manipulation of quantum systems. Already, meticulous design and construction of bench