Epitaxial Growth of Perovskite SrBiO$_3$ Film on SrTiO$_3$ by Oxide Molecular Beam Epitaxy


الملخص بالإنكليزية

Hole-doped perovskite bismuthates such as Ba$_{1-x}$K$_x$BiO$_3$ and Sr$_{1-x}$K$_x$BiO$_3$ are well-known bismuth-based oxide high-transition-temperature superconductors. Reported thin bismuthate films show relatively low quality, likely due to their large lattice mismatch with the substrate and a low sticking coefficient of Bi at high temperatures. Here, we report the successful epitaxial thin film growth of the parent compound strontium bismuthate SrBiO$_3$ on SrO-terminated SrTiO$_3$ (001) substrates by molecular beam epitaxy. Two different growth methods, high-temperature co-deposition or recrystallization cycles of low-temperature deposition plus high-temperature annealing, are developed to improve the epitaxial growth. SrBiO$_3$ has a pseudocubic lattice constant $sim$4.25 AA, an $sim$8.8% lattice mismatch on SrTiO$_3$ substrate, leading to a large strain in the first few unit cells. Films thicker than 6 unit cells prepared by both methods are fully relaxed to bulk lattice constant and have similar quality. Compared to high-temperature co-deposition, the recrystallization method can produce higher quality 1-6 unit cell films that are coherently or partially strained. Photoemission experiments reveal the bonding and antibonding states close to the Fermi level due to Bi and O hybridization, in good agreement with density functional theory calculations. This work provides general guidance to the synthesis of high-quality perovskite bismuthate films.

تحميل البحث