ﻻ يوجد ملخص باللغة العربية
On a Weierstra{ss} elliptic surface $X$, we define a `limit of Bridgeland stability conditions, denoted as $Z^l$-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. We describe conditions under which a slope stable torsion-free sheaf is taken by a Fourier-Mukai transform to a $Z^l$-stable object, and describe a modification upon which a $Z^l$-semistable object is taken by the inverse Fourier-Mukai transform to a slope semistable torsion-free sheaf. We also study wall-crossing for Bridgeland stability, and show that 1-dimensional twisted Gieseker semistable sheaves are taken by a Fourier-Mukai transform to Bridgeland semistable objects.
We consider elliptic fibrations with arbitrary base dimensions, and generalise previous work by the second author. In particular, we check universal closedness for the moduli of semistable objects with respect to a polynomial stability that reduces t
We show that the adjunction counits of a Fourier-Mukai transform $Phi$ from $D(X_1)$ to $D(X_2)$ arise from maps of the kernels of the corresponding Fourier-Mukai transforms. In a very general setting of proper separable schemes of finite type over a
We prove that a twisted Enriques (respectively, untwisted bielliptic) surface over an algebraically closed field of positive characteristic at least 3 (respectively, at least 5) has no non-trivial Fourier-Mukai partners.
Orlovs famous representability theorem asserts that any fully faithful exact functor between the bounded derived categories of coherent sheaves on smooth projective varieties is a Fourier-Mukai functor. In this paper we show that this result is false without the full faithfulness hypothesis.
A theorem by Orlov states that any equivalence between the bounded derived categories of coherent sheaves of two smooth projective varieties, X and Y, is isomorphic to a Fourier-Mukai transform with kernel in the bounded derived category of coherent