ﻻ يوجد ملخص باللغة العربية
We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the Lowdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmetry lines. Such release of the band degeneracy naturally determines a reconstruction of the Fermi surface, including the possibility of changing the number of pockets.
The recently synthesized ThFeAsN iron-pnictide superconductor exhibits a $T_c$ of 30 K, the highest of the 1111-type series in absence of chemical doping. To understand how pressure affects its electronic properties, we carried out microscopic invest
A polycrystalline sample of FeSe, which adopts the tetragonal PbO-type structure (P4/nmm) at room temperature, has been prepared using solid state reaction. We have investigated pressure-induced structural changes in tetragonal FeSe at varying hydros
The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important is
The orthorhombic uranium dichalcogenide UTe$_2$ displays superconductivity below 1.7 K, with the anomalous feature of retaining 50$%$ of normal state (ungapped) carriers, according to heat capacity data from two groups. Incoherent transport that cros
We report $^{75}$As-NMR results for CrAs under pressure, which shows superconductivity adjoining a helimagnetically ordered state. We successfully evaluated the Knight shift from the spectrum, which is strongly affected by the quadrupole interaction.