ترغب بنشر مسار تعليمي؟ اضغط هنا

Small Time Asymptotics for SPDEs with Locally Monotone Coefficients

111   0   0.0 ( 0 )
 نشر من قبل Wei Liu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This work aims to prove the small time large deviation principle (LDP) for a class of stochastic partial differential equations (SPDEs) with locally monotone coefficients in generalized variational framework. The main result could be applied to demonstrate the small time LDP for various quasilinear and semilinear SPDEs such as stochastic porous media equations, stochastic $p$-Laplace equations, stochastic Burgers type equation, stochastic 2D Navier-Stokes equation, stochastic power law fluid equation and stochastic Ladyzhenskaya model. In particular, our small time LDP result seems to be new in the case of general quasilinear SPDEs with multiplicative noise.



قيم البحث

اقرأ أيضاً

165 - N.V. Krylov 2008
We present several results on solvability in Sobolev spaces $W^{1}_{p}$ of SPDEs in divergence form in the whole space.
We prove existence and uniqueness of strong solutions for a class of semilinear stochastic evolution equations driven by general Hilbert space-valued semimartingales, with drift equal to the sum of a linear maximal monotone operator in variational fo rm and of the superposition operator associated to a random time-dependent monotone function defined on the whole real line. Such a function is only assumed to satisfy a very mild symmetry-like condition, but its rate of growth towards infinity can be arbitrary. Moreover, the noise is of multiplicative type and can be path-dependent. The solution is obtained via a priori estimates on solutions to regularized equations, interpreted both as stochastic equations as well as deterministic equations with random coefficients, and ensuing compactness properties. A key role is played by an infinite-dimensional Doob-type inequality due to Metivier and Pellaumail.
103 - Mengyu Cheng , Zhenxin Liu 2019
In this paper, we use the variational approach to investigate recurrent properties of solutions for stochastic partial differential equations, which is in contrast to the previous semigroup framework. Consider stochastic differential equations with m onotone coefficients. Firstly, we establish the continuous dependence on initial values and coefficients for solutions. Secondly, we prove the existence of recurrent solutions, which include periodic, almost periodic and almost automorphic solutions. Then we show that these recurrent solutions are globally asymptotically stable in square-mean sense. Finally, for illustration of our results we give two applications, i.e. stochastic reaction diffusion equations and stochastic porous media equations.
176 - N.V. Krylov 2008
We extend several known results on solvability in the Sobolev spaces $W^{1}_{p}$, $pin[2,infty)$, of SPDEs in divergence form in $bR^{d}_{+}$ to equations having coefficients which are discontinuous in the space variable.
This paper is devoted to proving the strong averaging principle for slow-fast stochastic partial differential equations with locally monotone coefficients, where the slow component is a stochastic partial differential equations with locally monotone coefficients and the fast component is a stochastic partial differential equations (SPDEs) with strongly monotone coefficients. The result is applicable to a large class of examples, such as the stochastic porous medium equation, the stochastic $p$-Laplace equation, the stochastic Burgers type equation and the stochastic 2D Navier-Stokes equation, which are the nonlinear stochastic partial differential equations. The main techniques are based on time discretization and the variational approach to SPDEs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا