ﻻ يوجد ملخص باللغة العربية
We present an approach to tackle the speaker recognition problem using Triplet Neural Networks. Currently, the $i$-vector representation with probabilistic linear discriminant analysis (PLDA) is the most commonly used technique to solve this problem, due to high classification accuracy with a relatively short computation time. In this paper, we explore a neural network approach, namely Triplet Neural Networks (TNNs), to built a latent space for different classifiers to solve the Multi-Target Speaker Detection and Identification Challenge Evaluation 2018 (MCE 2018) dataset. This training set contains $i$-vectors from 3,631 speakers, with only 3 samples for each speaker, thus making speaker recognition a challenging task. When using the train and development set for training both the TNN and baseline model (i.e., similarity evaluation directly on the $i$-vector representation), our proposed model outperforms the baseline by 23%. When reducing the training data to only using the train set, our method results in 309 confusions for the Multi-target speaker identification task, which is 46% better than the baseline model. These results show that the representational power of TNNs is especially evident when training on small datasets with few instances available per class.
We propose the multi-head convolutional neural network (MCNN) architecture for waveform synthesis from spectrograms. Nonlinear interpolation in MCNN is employed with transposed convolution layers in parallel heads. MCNN achieves more than an order of
Although deep neural networks are successful for many tasks in the speech domain, the high computational and memory costs of deep neural networks make it difficult to directly deploy highperformance Neural Network systems on low-resource embedded dev
This paper proposes a serialized multi-layer multi-head attention for neural speaker embedding in text-independent speaker verification. In prior works, frame-level features from one layer are aggregated to form an utterance-level representation. Ins
We previously established a large lung sound database, HF_Lung_V2 (Lung_V2). We trained convolutional-bidirectional gated recurrent unit (CNN-BiGRU) networks for detecting inhalation, exhalation, continuous adventitious sound (CAS) and discontinuous
Automatic speaker verification (ASV), one of the most important technology for biometric identification, has been widely adopted in security-critical applications, including transaction authentication and access control. However, previous work has sh