We consider protocols to generate quantum entanglement between two remote qubits, through joint time-continuous detection of their spontaneous emission. We demonstrate that schemes based on homodyne detection, leading to diffusive quantum trajectories, lead to identical average entanglement yield as comparable photodetection strategies; this is despite substantial differences in the two-qubit state dynamics between these schemes, which we explore in detail. The ability to use different measurements to achieve the same ends may be of practical significance; the less-well-known diffusive scheme appears far more feasible on superconducting qubit platforms in the near term.