We have designed superinductors made of strongly disordered superconductors for implementation in hybrid superconducting quantum circuits. The superinductors have been fabricated as meandered nanowires made of granular Aluminum films. Optimization of the device geometry enabled realization of superinductors with the inductance $sim 1 {mu}H$ and the self-resonance frequency over 3 GHz. These compact superinductors are attractive for a wide range of applications, from superconducting circuits for quantum computing to microwave elements of cryogenic parametric amplifiers and kinetic-inductance photon detectors.