ﻻ يوجد ملخص باللغة العربية
Controlled atomic scale fabrication of functional devices is one of the holy grails of nanotechnology. The most promising class of techniques that enable deterministic nanodevice fabrication are based on scanning probe patterning or surface assembly. However, this typically involves a complex process flow, stringent requirements for an ultra high vacuum environment, long fabrication times and, consequently, limited throughput and device yield. Here, a device platform is developed that overcomes these limitations by integrating scanning probe based dopant device fabrication with a CMOS-compatible process flow. Silicon on insulator substrates are used featuring a reconstructed Si(001):H surface that is protected by a capping chip and has pre-implanted contacts ready for scanning tunneling microscope (STM) patterning. Processing in ultra-high vacuum is thus reduced to only a few critical steps which minimizes the complexity, time and effort required for fabrication of the nanoscale dopant devices. Subsequent reintegration of the samples into the CMOS process flow not only simplifies the post-processing but also opens the door to successful application of STM based dopant devices as a building block in more complex device architectures. Full functionality of this approach is demonstrated with magnetotransport measurements on degenerately doped STM patterned Si:P nanowires up to room temperature.
Controlled placement of nanomaterials at predefined locations with nanoscale precision remains among the most challenging problems that inhibit their large-scale integration in the field of semiconductor process technology. Methods based on surface f
We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam induced
Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the
Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an app
We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a ch