We show that hybrid Dirac and Weyl semimetals can be realized in a three-dimensional Luttinger semimetal with quadratic band touching (QBT). We illustrate this using periodic kicking scheme. In particular, we focus on a momentum-dependent drivings (nonuniform driving) and demonstrate the realization of various hybrid Dirac and Weyl semimetals. We identify a unique hybrid dispersion Dirac semimetal with two nodes, where one of the nodes is linear while the other is dispersed quadraticlly. Next, we show that by tilting QBT via periodic driving and in the presence of an external magnetic field, one can realize various single/double hybrid Weyl semimetals depending on the strength of external field. Finally, we note that in principle, phases that are found in this work could also be realized by employing the appropriate electronic interactions.