ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Influence of Twitter Trolls during the 2016 US Presidential Election

180   0   0.0 ( 0 )
 نشر من قبل Nikos Salamanos
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is a widely accepted fact that state-sponsored Twitter accounts operated during the 2016 US presidential election spreading millions of tweets with misinformation and inflammatory political content. Whether these social media campaigns of the so-called troll accounts were able to manipulate public opinion is still in question. Here we aim to quantify the influence of troll accounts and the impact they had on Twitter by analyzing 152.5 million tweets from 9.9 million users, including 822 troll accounts. The data collected during the US election campaign, contain original troll tweets before they were deleted by Twitter. From these data, we constructed a very large interaction graph; a directed graph of 9.3 million nodes and 169.9 million edges. Recently, Twitter released datasets on the misinformation campaigns of 8,275 state-sponsored accounts linked to Russia, Iran and Venezuela as part of the investigation on the foreign interference in the 2016 US election. These data serve as ground-truth identifier of troll users in our dataset. Using graph analysis techniques we qualify the diffusion cascades of web and media context that have been shared by the troll accounts. We present strong evidence that authentic users were the source of the viral cascades. Although the trolls were participating in the viral cascades, they did not have a leading role in them and only four troll accounts were truly influential.



قيم البحث

اقرأ أيضاً

It is a widely accepted fact that state-sponsored Twitter accounts operated during the 2016 US presidential election, spreading millions of tweets with misinformation and inflammatory political content. Whether these social media campaigns of the so- called troll accounts were able to manipulate public opinion is still in question. Here, we quantify the influence of troll accounts on Twitter by analyzing 152.5 million tweets (by 9.9 million users) from that period. The data contain original tweets from 822 troll accounts identified as such by Twitter itself. We construct and analyse a very large interaction graph of 9.3 million nodes and 169.9 million edges using graph analysis techniques, along with a game-theoretic centrality measure. Then, we quantify the influence of all Twitter accounts on the overall information exchange as is defined by the retweet cascades. We provide a global influence ranking of all Twitter accounts and we find that one troll account appears in the top-100 and four in the top-1000. This combined with other findings presented in this paper constitute evidence that the driving force of virality and influence in the network came from regular users - users who have not been classified as trolls by Twitter. On the other hand, we find that on average, troll accounts were tens of times more influential than regular users were. Moreover, 23% and 22% of regular accounts in the top-100 and top-1000 respectively, have now been suspended by Twitter. This raises questions about their authenticity and practices during the 2016 US presidential election.
The dynamics and influence of fake news on Twitter during the 2016 US presidential election remains to be clarified. Here, we use a dataset of 171 million tweets in the five months preceding the election day to identify 30 million tweets, from 2.2 mi llion users, which contain a link to news outlets. Based on a classification of news outlets curated by www.opensources.co, we find that 25% of these tweets spread either fake or extremely biased news. We characterize the networks of information flow to find the most influential spreaders of fake and traditional news and use causal modeling to uncover how fake news influenced the presidential election. We find that, while top influencers spreading traditional center and left leaning news largely influence the activity of Clinton supporters, this causality is reversed for the fake news: the activity of Trump supporters influences the dynamics of the top fake news spreaders.
Over the past couple of years, anecdotal evidence has emerged linking coordinated campaigns by state-sponsored actors with efforts to manipulate public opinion on the Web, often around major political events, through dedicated accounts, or trolls. Al though they are often involved in spreading disinformation on social media, there is little understanding of how these trolls operate, what type of content they disseminate, and most importantly their influence on the information ecosystem. In this paper, we shed light on these questions by analyzing 27K tweets posted by 1K Twitter users identified as having ties with Russias Internet Research Agency and thus likely state-sponsored trolls. We compare their behavior to a random set of Twitter users, finding interesting differences in terms of the content they disseminate, the evolution of their account, as well as their general behavior and use of Twitter. Then, using Hawkes Processes, we quantify the influence that trolls had on the dissemination of news on social platforms like Twitter, Reddit, and 4chan. Overall, our findings indicate that Russian trolls managed to stay active for long periods of time and to reach a substantial number of Twitter users with their tweets. When looking at their ability of spreading news content and making it viral, however, we find that their effect on social platforms was minor, with the significant exception of news published by the Russian state-sponsored news outlet RT (Russia Today).
Online Social Networks represent a novel opportunity for political campaigns, revolutionising the paradigm of political communication. Nevertheless, many studies uncovered the presence of d/misinformation campaigns or of malicious activities by genui ne or automated users, putting at severe risk the credibility of online platforms. This phenomenon is particularly evident during crucial political events, as political elections. In the present paper, we provide a comprehensive description of the structure of the networks of interactions among users and bots during the UK elections of 2019. In particular, we focus on the polarised discussion about Brexit on Twitter analysing a data set made of more than 10 million tweets posted for over a month. We found that the presence of automated accounts fostered the debate particularly in the days before the UK national elections, in which we find a steep increase of bots in the discussion; in the days after the election day, their incidence returned to values similar to the ones observed few weeks before the elections. On the other hand, we found that the number of suspended users (i.e. accounts that were removed by the platform for some violation of the Twitter policy) remained constant until the election day, after which it reached significantly higher values. Remarkably, after the TV debate between Boris Johnson and Jeremy Corbyn, we observed the injection of a large number of novel bots whose behaviour is markedly different from that of pre-existing ones. Finally, we explored the bots stance, finding that their activity is spread across the whole political spectrum, although in different proportions, and we studied the different usage of hashtags by automated accounts and suspended users, thus targeting the formation of common narratives in different sides of the debate.
62 - Dmitry Zinoviev 2020
We applied complex network analysis to ~27,000 tweets posted by the 2016 presidential elections principal participants in the USA. We identified the stages of the election campaigns and the recurring topics addressed by the candidates. Finally, we re vealed the leader-follower relationships between the candidates. We conclude that Secretary Hillary Clintons Twitter performance was subordinate to that of Donald Trump, which may have been one factor that led to her electoral defeat.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا