ﻻ يوجد ملخص باللغة العربية
We present a pair of joint conditions on the two functions $b_1,b_2$ strictly weaker than $b_1,b_2in operatorname{BMO}$ that almost characterize the $L^2$ boundedness of the iterated commutator $[b_2,[b_1,T]]$ of these functions and a Calderon-Zygmund operator $T.$ Namely, we sandwich this boundedness between two bisublinear mean oscillation conditions of which one is a slightly bumped up version of the other.
We give a simple proof of L^p boundedness of iterated commutators of Riesz transforms and a product BMO function. We use a representation of the Riesz transforms by means of simple dyadic operators - dyadic shifts - which in turn reduces the estimate quickly to paraproduct estimates.
A new characterization of CMO(R^n) is established by the local mean oscillation. Some characterizations of iterated compact commutators on weighted Lebesgue spaces are given, which are new even in the unweighted setting for the first order commutators.
Let $alphain (0, 1]$, $betain [0, n)$ and $T_{Omega,beta}$ be a singular or fractional integral operator with homogeneous kernel $Omega$. In this article, a CMO type space ${rm CMO}_alpha(mathbb R^n)$ is introduced and studied. In particular, the rel
Let $fin L_{2pi}$ be a real-valued even function with its Fourier series $ frac{a_{0}}{2}+sum_{n=1}^{infty}a_{n}cos nx,$ and let $S_{n}(f,x), ngeq 1,$ be the $n$-th partial sum of the Fourier series. It is well-known that if the nonnegative sequence
In this paper, we first establish the weighted compactness result for oscillation and variation associated with the truncated commutator of singular integral operators. Moreover, we establish a new $CMO(mathbb{R}^n)$ characterization via the compactn