ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph convolutional networks for learning with few clean and many noisy labels

157   0   0.0 ( 0 )
 نشر من قبل Ahmet Iscen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we consider the problem of learning a classifier from noisy labels when a few clean labeled examples are given. The structure of clean and noisy data is modeled by a graph per class and Graph Convolutional Networks (GCN) are used to predict class relevance of noisy examples. For each class, the GCN is treated as a binary classifier, which learns to discriminate clean from noisy examples using a weighted binary cross-entropy loss function. The GCN-inferred clean probability is then exploited as a relevance measure. Each noisy example is weighted by its relevance when learning a classifier for the end task. We evaluate our method on an extended version of a few-shot learning problem, where the few clean examples of novel classes are supplemented with additional noisy data. Experimental results show that our GCN-based cleaning process significantly improves the classification accuracy over not cleaning the noisy data, as well as standard few-shot classification where only few clean examples are used.



قيم البحث

اقرأ أيضاً

We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approa ch for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.
We propose a framework using contrastive learning as a pre-training task to perform image classification in the presence of noisy labels. Recent strategies such as pseudo-labeling, sample selection with Gaussian Mixture models, weighted supervised co ntrastive learning have been combined into a fine-tuning phase following the pre-training. This paper provides an extensive empirical study showing that a preliminary contrastive learning step brings a significant gain in performance when using different loss functions: non-robust, robust, and early-learning regularized. Our experiments performed on standard benchmarks and real-world datasets demonstrate that: i) the contrastive pre-training increases the robustness of any loss function to noisy labels and ii) the additional fine-tuning phase can further improve accuracy but at the cost of additional complexity.
Multi-label image classification has generated significant interest in recent years and the performance of such systems often suffers from the not so infrequent occurrence of incorrect or missing labels in the training data. In this paper, we extend the state-of the-art of training classifiers to jointly deal with both forms of errorful data. We accomplish this by modeling noisy and missing labels in multi-label images with a new Noise Modeling Network (NMN) that follows our convolutional neural network (CNN), integrates with it, forming an end-to-end deep learning system, which can jointly learn the noise distribution and CNN parameters. The NMN learns the distribution of noise patterns directly from the noisy data without the need for any clean training data. The NMN can model label noise that depends only on the true label or is also dependent on the image features. We show that the integrated NMN/CNN learning system consistently improves the classification performance, for different levels of label noise, on the MSR-COCO dataset and MSR-VTT dataset. We also show that noise performance improvements are obtained when multiple instance learning methods are used.
Class imbalance and noisy labels are the norm rather than the exception in many large-scale classification datasets. Nevertheless, most works in machine learning typically assume balanced and clean data. There have been some recent attempts to tackle , on one side, the problem of learning from noisy labels and, on the other side, learning from long-tailed data. Each group of methods make simplifying assumptions about the other. Due to this separation, the proposed solutions often underperform when both assumptions are violated. In this work, we present a simple two-stage approach based on recent advances in self-supervised learning to treat both challenges simultaneously. It consists of, first, task-agnostic self-supervised pre-training, followed by task-specific fine-tuning using an appropriate loss. Most significantly, we find that self-supervised learning approaches are effectively able to cope with severe class imbalance. In addition, the resulting learned representations are also remarkably robust to label noise, when fine-tuned with an imbalance- and noise-resistant loss function. We validate our claims with experiments on CIFAR-10 and CIFAR-100 augmented with synthetic imbalance and noise, as well as the large-scale inherently noisy Clothing-1M dataset.
118 - Kento Nishi , Yi Ding , Alex Rich 2021
Imperfect labels are ubiquitous in real-world datasets. Several recent successful methods for training deep neural networks (DNNs) robust to label noise have used two primary techniques: filtering samples based on loss during a warm-up phase to curat e an initial set of cleanly labeled samples, and using the output of a network as a pseudo-label for subsequent loss calculations. In this paper, we evaluate different augmentation strategies for algorithms tackling the learning with noisy labels problem. We propose and examine multiple augmentation strategies and evaluate them using synthetic datasets based on CIFAR-10 and CIFAR-100, as well as on the real-world dataset Clothing1M. Due to several commonalities in these algorithms, we find that using one set of augmentations for loss modeling tasks and another set for learning is the most effective, improving results on the state-of-the-art and other previous methods. Furthermore, we find that applying augmentation during the warm-up period can negatively impact the loss convergence behavior of correctly versus incorrectly labeled samples. We introduce this augmentation strategy to the state-of-the-art technique and demonstrate that we can improve performance across all evaluated noise levels. In particular, we improve accuracy on the CIFAR-10 benchmark at 90% symmetric noise by more than 15% in absolute accuracy, and we also improve performance on the Clothing1M dataset. (K. Nishi and Y. Ding contributed equally to this work)

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا