Long-distance dissipation-assisted transport of entangled states via a chiral waveguide


الملخص بالإنكليزية

Quantum networks provide a prominent platform for realizing quantum information processing and quantum communication, with entanglement being a key resource in such applications. Here, we describe the dissipative transport protocol for entangled states, where entanglement stored in the first node of quantum network can be transported with high fidelity to the second node via a 1D chiral waveguide. In particular, we exploit the directional asymmetry in chirally-coupled single-mode ring resonators to transport entangled states. For the fully chiral waveguide, Bell states, multipartite $W$-states and and Dicke states can be transported with fidelity as high as $0.954$, despite the fact that the communication channel is noisy. Our proposal can be utilized for long-distance distribution of multipartite entangled states between the quantum nodes of the open quantum network.

تحميل البحث