ﻻ يوجد ملخص باللغة العربية
We apply the theory of fundamental strata of Bremer and Sage to find cohomologically rigid $G$-connections on the projective line, generalising the work of Frenkel and Gross. In this theory, one studies the leading term of a formal connection with respect to the Moy-Prasad filtration associated to a point in the Bruhat-Tits building. If the leading term is regular semisimple with centraliser a (not necessarily split) maximal torus $S$, then we have an $S$-toral connection. In this language, the irregular singularity of the Frenkel-Gross connection gives rise to the homogenous toral connection of minimal slope associated to the Coxeter torus $mathcal{C}$. In the present paper, we consider connections on $mathbb{G}_m$ which have an irregular homogeneous $mathcal{C}$-toral singularity at zero of slope $i/h$, where $h$ is the Coxeter number and $i$ is a positive integer coprime to $h$, and a regular singularity at infinity with unipotent monodromy. Our main result is the characterisation of all such connections which are rigid.
Given a split semisimple group over a local field, we consider the maximal Satake-Berkovich compactification of the corresponding Euclidean building. We prove that it can be equivariantly identified with the compactification which we get by embedding
We provide a number of new conjectures and questions concerning the syzygies of $mathbb{P}^1times mathbb{P}^1$. The conjectures are based on computing the graded Betti tables and related data for large number of different embeddings of $mathbb{P}^1ti
We begin this paper by reviewing the Langlands correspondence for unipotent representations of the exceptional group of type $G_2$ over a $p$-adic field $F$ and present it in an explicit form. Then we compute all ABV-packets, as defined in [CFM+21] f
In 1993 David Vogan proposed a basis for the vector space of stable distributions on $p$-adic groups using the microlocal geometry of moduli spaces of Langlands parameters. In the case of general linear groups, distribution characters of irreducible
In this article we propose a geometric description of Arthur packets for $p$-adic groups using vanishing cycles of perverse sheaves. Our approach is inspired by the 1992 book by Adams, Barbasch and Vogan on the Langlands classification of admissible