ﻻ يوجد ملخص باللغة العربية
HaloSat is a small satellite (CubeSat) designed to map soft X-ray oxygen line emission across the sky in order to constrain the mass and spatial distribution of hot gas in the Milky Way. The goal of HaloSat is to help determine if hot gas gravitationally bound to individual galaxies makes a significant contribution to the cosmological baryon budget. HaloSat was deployed from the International Space Station in July 2018 and began routine science operations in October 2018. We describe the goals and design of the mission, the on-orbit performance of the science instrument, and initial observations.
Application of cubesats in astronomical observations has been getting more and more mature in recent years. Here we report a concept study of a small Compton polarimeter to fly on a cubesat for observing polarization of soft gamma-rays from a black-h
Galaxies are surrounded by halos of hot gas whose mass and origin remain unknown. One of the most challenging properties to measure is the metallicity, which constrains both of these. We present a measurement of the metallicity around NGC 891, a near
HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emi
The Colorado Ultraviolet Transit Experiment (CUTE) is a near-UV (2550 - 3300 Angstrom) 6U cubesat mission designed to monitor transiting hot Jupiters to quantify their atmospheric mass loss and magnetic fields. CUTE will probe both atomic (Mg and Fe)
The Star-Planet Activity Research CubeSat (SPARCS) is a NASA-funded astrophysics mission, devoted to the study of the ultraviolet (UV) time-domain behavior in low-mass stars. Given their abundance and size, low-mass stars are important targets in the