ترغب بنشر مسار تعليمي؟ اضغط هنا

Unified Description of Polarized and Unpolarized Quark Distributions in the Proton

87   0   0.0 ( 0 )
 نشر من قبل Tianbo Liu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a unified new approach to describe polarized and unpolarized quark distributions in the proton based on the gauge-gravity correspondence, light-front holography, and the generalized Veneziano model. We find that the spin-dependent quark distributions are uniquely determined in terms of the unpolarized distributions by chirality separation without the introduction of additional free parameters. The predictions are consistent with existing experimental data and agree with perturbative QCD constraints at large longitudinal momentum $x$. In particular, we predict the sign reversal of the polarized down-quark distribution in the proton at $x=0.8pm0.03$, a key property of nucleon substructure which will be tested very soon in upcoming experiments.



قيم البحث

اقرأ أيضاً

279 - Masashi Wakamatsu 2014
It is now widely recognized that a key to unravel the nonperturbative chiral-dynamics of QCD hidden in the deep-inelastic-scattering observables is the flavor structure of sea-quark distributions in the nucleon. We analyze the flavor structure of the nucleon sea in both of the unpolarized and longitudinally polarized parton distribution functions (PDFs) within a single theoretical framework of the flavor SU(3) chiral quark soliton model (CQSM), which contains only one adjustable parameter $Delta m_s$, the effective mass difference between the strange and nonstrange quarks. A particular attention is paid to a nontrivial correlation between the flavor asymmetry of the unpolarized and longitudinally polarized sea-quark distributions and also to a possible particle-antiparticle asymmetry of the strange quark distributions in the nucleon. We also investigate the charge-symmetry-violation (CSV) effects in the parton distribution functions exactly within the same theretical framework, which is expected to provide us with valuable information on the relative importance of the asymmetry of the strange and antistrange distributions and the CSV effects in the valence-quark distributions inside the nucleon in the resolution scenario of the so-called NuTeV anomaly in the extraction of the Weinberg angle.
We summarize recent attempts to calculate the flavor asymmetry of the nucleons sea quark distributions in the large-$N_c$ limit, where the nucleon can be described as a soliton of an effective chiral theory. We discuss the leading-twist longitudinall y polarized and transversity antiquark distributions, $Deltabar u (x) - Deltabar d (x)$ and $deltabar u (x) - deltabar d (x)$, as well as the unpolarized one, $bar u (x) - bar d (x)$, which appears only in the next-to-leading order of the $1/N_c$-expansion. Results for $bar u (x) - bar d (x)$ are in good agreement with the recent Drell-Yan data from the FNAL E866 experiment. The longitudinally polarized antiquark asymmetry, $Deltabar u (x) - Deltabar d (x)$, is found to be larger than the unpolarized one.
It is commonly believed that the Sivers function has uniquely to do with processes involving a transversely polarized nucleon. In this paper we show that it is not necessarily the case. We demonstrate that exclusive pion production in $un$polarized e lectron-proton scattering in the forward region is a direct probe of the gluon Sivers function due to its connection to the QCD Odderon.
We study inclusive heavy quarkonium production with definite polarizations in polarized proton-proton collisions using the non-relativistic QCD color-octet mechanism. We present results for rapidity distributions of cross sections and spin asymmetrie s for the production of J/psi and psi with specific polarizations in polarized p-p collisions at sqrt s = 200 GeV and 500 GeV at the RHIC within the PHENIX detector acceptance range.
We calculate the correlation coefficients of the electron-energy and electron-antineutrino angular distribution of the neutron beta decay with polarized electron and unpolarised neutron and proton. The calculation is carried out within the Standard M odel (SM) with the contributions, caused by the weak magnetism, proton recoil and radiative corrections of order of 10^{-3}, Wilkinsons corrections of order 10^{-5}$(Wilkinson, Nucl. Phys. A377, 474 (1982) and Ivanov et al., Phys. Rev. C95, 055502 (2017)) and the contributions of interactions beyond the SM. The obtained results can be used for the analysis of experimental data on searches of interactions beyond the SM at the level of 10^{-4} (Abele, Hyperfine Interact. 237, 155 (2016)). The contributions of G-odd correlations are calculated and found at the level of 10^{-5} in agreement with the results obtained by Gardner and Plaster (Phys. Rev. C87, 065504 (2013)) and Ivanov et al. (Phys. Rev. C98, 035503 (2018)).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا