ترغب بنشر مسار تعليمي؟ اضغط هنا

An examination of the effect of the TESS extended mission on southern hemisphere monotransits

66   0   0.0 ( 0 )
 نشر من قبل Benjamin Cooke MSc
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: NASA recently announced an extended mission for TESS. As a result it is expected that the southern ecliptic hemisphere will be re-observed approximately two years after the initial survey. Aims: We aim to explore how TESS re-observing the southern ecliptic hemisphere will impact the number and distribution of mono-transits discovered during the first year of observations. This simulation will be able to be scaled to any future TESS re-observations. Methods: We carry out an updated simulation of TESS detections in the southern ecliptic hemisphere. This simulation includes realistic Sector window-functions based on the first 11 sectors of SPOC 2 min SAP lightcurves. We then extend this simulation to cover the expected Year 4 of the mission when TESS will re-observed the southern ecliptic fields. For recovered monotransits we also look at the possibility of predicting the period based on the coverage in the TESS data. Results: We find an updated prediction of 339 monotransits from the TESS Year 1 southern ecliptic hemisphere, and that approximately 80% of these systems (266/339) will transit again in the Year 4 observations. The Year 4 observations will also contribute new monotransits not seen in Year 1, resulting in a total of 149 monotransits from the combined Year 1 and Year 4 data sets. We find that 75% (189/266) of recovered Year 1 monotransits will only transit once in the Year 4 data set. For these systems we will be able to constrain possible periods, but period aliasing due to the large time gap between Year 1 and Year 4 observations means that the true period will remain unknown with further spectroscopic or photometric follow-up.



قيم البحث

اقرأ أيضاً

We set out to explore how best to mitigate the number of period aliases for a transiting TESS system with two identified transits separated by a large time period on the order of years. We simulate a realistic population of doubly transiting planets based on the observing strategy of the TESS primary and extended missions. We next simulate additional observations using photometry (NGTS) and spectroscopy (HARPS and CORALIE) and assess its impact on the period aliases of systems with two TESS transits. We find that TESS will detect around 400 exoplanets that exhibit one transit in each of the primary and extended missions. Based on the temporal coverage, each of these systems will have an average of 38 period aliases. We find that, assuming a combination of NGTS and CORALIE over observing campaigns spanning 50 days, we can find the true alias, and thus solve the period, for up to 207 of these systems with even more being solved if the observing campaigns are extended or we upgrade to HARPS over CORALIE.
We set out to look at the overlap between CHEOPS sky coverage and TESS primary mission monotransits to determine what fraction of TESS monotransits may be observed by CHEOPS. We carry out a simulation of TESS transits based on the stellar population in TICv8 in the primary TESS mission. We then select the monotransiting candidates and determine their CHEOPS observing potential. We find that TESS will discover approximately 433 monotransits during its primary mission. Using a baseline observing efficiency of 40% we then find that 387 of these ($sim$89%) will be observable by CHEOPS with an average observing time of $sim$60 days per year. Based on the individual observing times and orbital periods of each system we predict that CHEOPS could observe additional transits for approximately 302 of the 433 TESS primary mission monotransits ($sim$70%). Given that CHEOPS will require some estimate of period before observing a target we estimate that up to 250 ($sim$58%) TESS primary mission monotransits could have solved periods prior to CHEOPS observations using a combination of photometry and spectroscopy.
We present 2,241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its two-year prime mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously-known planets recovered by TESS observations. We describe the process used to identify TOIs and investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI Catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well-suited for detailed follow-up observations. The TESS data products for the Prime Mission (Sectors 1-26), including the TOI Catalog, light curves, full-frame images, and target pixel files, are publicly available on the Mikulski Archive for Space Telescopes.
Although the final observations of the Spitzer Warm Mission are currently scheduled for March 2019, it can continue operations through the end of the decade with no loss of photometric precision. As we will show, there is a strong science case for ex tending the current Warm Mission to December 2020. Spitzer has already made major impacts in the fields of exoplanets (including microlensing events), characterizing near Earth objects, enhancing our knowledge of nearby stars and brown dwarfs, understanding the properties and structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to study galaxy birth and evolution. By extending Spitzer through 2020, it can continue to make ground-breaking discoveries in those fields, and provide crucial support to the NASA flagship missions JWST and WFIRST, as well as the upcoming TESS mission, and it will complement ground-based observations by LSST and the new large telescopes of the next decade. This scientific program addresses NASAs Science Mission Directives objectives in astrophysics, which include discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars.
190 - M. Montalto 2020
In this work, we present the analysis of 976 814 FGKM dwarf and sub-giant stars in the TESS Full Frame Images (FFIs) of the Southern ecliptic hemisphere. We present a new pipeline, DIAmante, developed to extract optimized, multi-sector photometry fro m TESS FFIs and a classifier, based on the Random Forest technique, trained to discriminate plausible transiting planetary candidates from common false positives. A new statistical model was developed to provide the probability of correct identification of the source of variability. We restricted the planet search to the stars located in the least crowded regions of the sky and identified 396 transiting planetary candidates among which 252 are new detections. The candidates radius distribution ranges between 1 R$rm_{oplus}$ and 2.6 R$rm_J$ with median value of 1 R$rm_J$ and the period distribution ranges between 0.25 days and 105 days with median value of 3.8 days. The sample contains four long period candidates (P>50 days) one of which is new and 64 candidates with periods between 10 and 50 days (42 new ones). In the small planet radius domain (R<4 R$rm_{oplus}$) we found 39 candidates among which 15 are new detections. Additionally, we present 15 single transit events (14 new ones), a new candidate multi-planetary system and a novel candidate around a known TOI. By using {it Gaia} dynamical constraints we found that 70 objects show evidence of binarity. We release a catalog of the objects we analyzed and the corresponding lightcurves and diagnostic figures through the MAST and ExoFOP portals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا