ﻻ يوجد ملخص باللغة العربية
The detection of low-mass transiting exoplanets in multiple systems brings new constraints to planetary formation and evolution processes and challenges the current planet formation theories. Nevertheless, only a mere fraction of the small planets detected by Kepler and K2 have precise mass measurements, which are mandatory to constrain their composition. We aim to characterise the planets that orbit the relatively bright star K2-138. This system is dynamically particular as it presents the longest chain known to date of planets close to the 3:2 resonance. We obtained 215 HARPS spectra from which we derived the radial-velocity variations of K2-138. Via a joint Bayesian analysis of both the K2 photometry and HARPS radial-velocities (RVs), we constrained the parameters of the six planets in orbit. The masses of the four inner planets, from b to e, are 3.1, 6.3, 7.9, and 13.0 $mathrm{M}_{oplus}$ with a precision of 34%, 20%, 18%, and 15%, respectively. The bulk densities are 4.9, 2.8, 3.2, and 1.8 g cm$^{-3}$, ranging from Earth to Neptune-like values. For planets f and g, we report upper limits. Finally, we predict transit timing variations of the order two to six minutes from the masses derived. Given its peculiar dynamics, K2-138 is an ideal target for transit timing variation (TTV) measurements from space with the upcoming CHaracterizing ExOPlanet Satellite (CHEOPS) to study this highly-packed system and compare TTV and RV masses.
K2-138 is a moderately bright (V = 12.2, K = 10.3) main sequence K-star observed in Campaign 12 of the NASA K2 mission. It hosts five small (1.6-3.3R_Earth) transiting planets in a compact architecture. The periods of the five planets are 2.35 d, 3.5
$K2$ greatly extended $Kepler$s ability to find new planets, but it was typically limited to identifying transiting planets with orbital periods below 40 days. While analyzing $K2$ data through the Exoplanet Explorers project, citizen scientists help
Context: We present the transit and follow-up of a single transit event from Campaign 14 of K2, EPIC248847494b, which has a duration of 54 hours and a 0.18% depth. Aims: Using photometric tools and conducting radial velocity follow-up, we vet and cha
High-precision planetary densities are key to derive robust atmospheric properties for extrasolar planets. Measuring precise masses is the most challenging part, especially in multi-planetary systems. We measure the masses and densities of a four-pla
M-dwarf stars are promising targets for identifying and characterizing potentially habitable planets. K2-3 is a nearby (45 pc), early-type M dwarf hosting three small transiting planets, the outermost of which orbits close to the inner edge of the st