ﻻ يوجد ملخص باللغة العربية
Mahowald proved the height 1 telescope conjecture at the prime 2 as an application of his seminal work on bo-resolutions. In this paper we study the height 2 telescope conjecture at the prime 2 through the lens of tmf-resolutions. To this end we compute the structure of the tmf-resolution for a specifc type 2 complex Z. We find that, analogous to the height 1 case, the E1-page of the tmf-resolution possesses a decomposition into a v2-periodic summand, and an Eilenberg-MacLane summand which consists of bounded v2-torsion. However, unlike the height 1 case, the E2-page of the tmf-resolution exhibits unbounded v2-torsion. We compare this to the work of Mahowald-Ravenel-Shick, and discuss how the validity of the telescope conjecture is connected to the fate of this unbounded v2-torsion: either the unbounded v2-torsion kills itself off in the spectral sequence, and the telescope conjecture is true, or it persists to form v2-parabolas and the telescope conjecture is false. We also study how to use the tmf-resolution to effectively give low dimensional computations of the homotopy groups of Z. These computations allow us to prove a conjecture of the second author and Egger: the E(2)-local Adams-Novikov spectral sequence for Z collapses.
We determine the image of the 2-primary tmf-Hurewicz homomorphism, where tmf is the spectrum of topological modular forms. We do this by lifting elements of tmf_* to the homotopy groups of the generalized Moore spectrum M(8,v_1^8) using a modified fo
Explicit calculations of the algebraic theory of power operations for a specific Morava E-theory spectrum are given, without detailed proofs.
This paper contains a complete computation of the homotopy ring of the spectrum of topological modular forms constructed by Hopkins and Miller. The computation is done away from 6, and at the (interesting) primes 2 and 3 separately, and in each of th
We explore an approach to twisted generalized cohomology from the point of view of stable homotopy theory and quasicategory theory provided by arXiv:0810.4535. We explain the relationship to the twisted K-theory provided by Fredholm bundles. We show
The $2$-primary homotopy $beta$-family, defined as the collection of Mahowald invariants of Mahowald invariants of $2^i$, $i geq 1$, is an infinite collection of periodic elements in the stable homotopy groups of spheres. In this paper, we calculate