ﻻ يوجد ملخص باللغة العربية
Within a multicomponent dark matter scenario, novel gamma-ray signals may arise from the decay of the heavier dark matter component into the lighter. For a scalar dark sector of this kind, the decay $phi_2rightarrowphi_1 gamma$ is forbidden by the conservation of angular momentum, but the decay $phi_2 rightarrow phi_1 gammagamma$ can have a sizable or even dominant branching ratio. In this paper we present a detailed study of this decay channel. We determine the width and photon energy spectrum generated in the decay, employing an effective theory approach, and in UV complete models where the scalar dark matter components interact with heavy or light fermions. We also calculate limits on the inverse width from current data of the isotropic diffuse photon flux, both for a hierarchical and a degenerate dark matter spectrum. Finally, we briefly comment on the prospects of observing the diphoton signal from sneutrino decay in the minimal supersymmetric standard model extended with right-handed neutrino superfields ($tilde{ u}$MSSM).
We consider the singlet scalar model of dark matter and study the expected antiproton and positron signals from dark matter annihilations. The regions of the viable parameter space of the model that are excluded by present data are determined, as wel
We point out the possibility to test the simplest scalar dark matter model at gamma-ray telescopes. We discuss the relevant constraints and show the predictions for direct detection, gamma line searches and LHC searches. Since the final state radiati
We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino o
The Fermi Large Area Telescope observed an excess in gamma ray emission spectrum coming from the center of the Milky Way galaxy. This data reveals that a light Dark Matter (DM) candidate of mass in the range 31-40 GeV, dominantly decaying into $bbar
We present a scalar dark matter (DM) model where DM ($X_I$) is stabilized by a local $Z_2$ symmetry originating from a spontaneously broken local dark $U(1)_X$. Compared with the usual scalar DM with a global $Z_2$ symmetry, the local $Z_2$ model pos