ﻻ يوجد ملخص باللغة العربية
We construct a family of birational maps acting on two dimensional projective varieties, for which the growth of the degrees of the iterates is cubic. It is known that this growth can be bounded, linear, quadratic or exponential for such maps acting on two dimensional compact Kahler varieties. The example we construct goes beyond this limitation, thanks to the presence of a singularity on the variety where the maps act. We provide all details of the calculations.
We look at sequences of positive integers that can be realized as degree sequences of iterates of rational dominant maps of smooth projective varieties over arbitrary fields. New constraints on the degree growth of endomorphisms of the affine space a
We compute the degree complexity of a family of birational mappings of the plane with high order singularities.
We prove birational superrigidity of every hypersurface of degree N in P^N with singular locus of dimension s, under the assumption that N is at least 2s+8 and it has only quadratic singularities of rank at least N-s. Combined with the results of I.
For each $n$, let $text{RD}(n)$ denote the minimum $d$ for which there exists a formula for the general polynomial of degree $n$ in algebraic functions of at most $d$ variables. In 1945, Segre called for a better understanding of the large $n$ behavi
We improve a result of Prokhorov and Shramov on the rank of finite $p$-subgroups of the birational automorphism group of a rationally connected variety. Known examples show that they are sharp in many cases.