ﻻ يوجد ملخص باللغة العربية
Stochastic mechanics---the study of classical stochastic systems governed by things like master equations and Fokker-Planck equations---exhibits striking mathematical parallels to quantum mechanics. In this article, we make those parallels more transparent by presenting a quantum mechanics-like formalism for deriving a path integral description of systems described by stochastic differential equations. Our formalism expediently recovers the usual path integrals (the Martin-Siggia-Rose-Janssen-De Dominicis and Onsager-Machlup forms) and is flexible enough to account for different variable domains (e.g. real line versus compact interval), stochastic interpretations, arbitrary numbers of variables, explicit time-dependence, dimensionful control parameters, and more. We discuss the implications of our formalism for stochastic biology.
We consider Euclidean path integrals with higher derivative actions, including those that depend quadratically on acceleration, velocity and position. Such path integrals arise naturally in the study of stiff polymers, membranes with bending rigidity
Quantum many-body systems are characterized by patterns of correlations that define highly-non trivial manifolds when interpreted as data structures. Physical properties of phases and phase transitions are typically retrieved via simple correlation f
Dimerized quantum spin systems may appear under several circumstances, e.g by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to
The Milestoning method has achieved great success in the calculation of equilibrium kinetic properties such as rate constants from molecular dynamics simulations. The goal of this work is to advance Milestoning into the realm of non-equilibrium stati
Perturbative quantum field theory usually uses second quantisation and Feynman diagrams. The worldline formalism provides an alternative approach based on first quantised particle path integrals, similar in spirit to string perturbation theory. Here