ﻻ يوجد ملخص باللغة العربية
Random matrix theory has proven very successful in the understanding of the spectra of chaotic systems. Depending on symmetry with respect to time reversal and the presence or absence of a spin 1/2 there are three ensembles, the Gaussian orthogonal (GOE), Gaussian unitary (GUE), and Gaussian symplectic (GSE) one. With a further particle-antiparticle symmetry the chiral variants of these ensembles, the chiral orthogonal, unitary, and symplectic ensembles (the BDI, AIII, and CII in Cartans notation) appear. A microwave study of the chiral ensembles is presented using a linear chain of evanescently coupled dielectric cylindrical resonators. In all cases the predicted repulsion behavior between positive and negative eigenvalues for energies close to zero could be verified.
The Landauer-Buttiker formalism establishes an equivalence between the electrical conduction through a device, e.g., a quantum dot, and the transmission. Guided by this analogy we perform transmission measurements through three-port microwave graphs
The circular orthogonal and circular symplectic ensembles are mapped onto free, non-hermitian fermion systems. As an illustration, the two-level form factors are calculated.
Transmission measurements through three-port microwave graphs are performed in a symmetric setting, in analogy to three-terminal voltage drop devices with orthogonal, unitary, and symplectic symmetry. The terminal used as a probe is symmetrically loc
Over a non-archimedean local field of characteristic zero, we prove the multiplicity preservation for orthogonal-symplectic dual pair correspondences and unitary dual pair correspondences.
While it has been pointed out that the chiral symmetry, which is important for the Dirac fermions in graphene, can be generalized to tilted Dirac fermions as in organic metals, such a generalized symmetry was so far defined only for a continuous low-