ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-Effect Control of Metallic Superconducting Systems

109   0   0.0 ( 0 )
 نشر من قبل Federico Paolucci
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite metals are believed to be insensitive to field-effect and conventional Bardeen-Cooper-Schrieffer (BCS) theories predict the electric field to be ineffective on conventional superconductors, a number of gating experiments showed the possibility of modulating the conductivity of metallic thin films and the critical temperature of conventional superconductors. All these experimental features have been explained by simple charge accumulation/depletion. In 2018, electric field control of supercurrent in conventional metallic superconductors has been demonstrated in a range of electric fields where the induced variation of charge carrier concentration in metals is negligibly small. In fact, no changes of normal state resistance and superconducting critical temperature were reported. Here, we review the experimental results obtained in the realization of field-effect metallic superconducting devices exploiting this unexplained phenomenon. We will start by presenting the seminal results on superconducting BCS wires and nano-constriction Josephson junctions (Dayem bridges) made of different materials, such as titanium, aluminum and vanadium. Then, we show the mastering of the Josephson supercurrent in superconductor-normal metal-superconductor proximity transistors suggesting that the presence of induced superconducting correlations are enough to see this unconventional field-effect. Later, we present the control of the interference pattern in a superconducting quantum interference device indicating the coupling of the electric field with thesuperconducting phase. Among the possible applications of the presented phenomenology, we conclude this review by proposing some devices that may represent a breakthrough in superconducting quantum and classical computation.



قيم البحث

اقرأ أيضاً

Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low charge concentration materials, and present technological diffculties limiting their scalability. Surpr isingly, electric field modulation of supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively-coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (IS) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction the maximum achievable total IS suppresses down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry and single-photon detection.
141 - H. Jirari , F.W.J. Hekking , 2009
We consider a current-biased dc SQUID in the presence of an applied time-dependent bias current or magnetic flux. The phase dynamics of such a Josephson device is equivalent to that of a quantum particle trapped in a $1-$D anharmonic potential, subje ct to external time-dependent control fields, {it i.e.} a driven multilevel quantum system. The problem of finding the required time-dependent control field that will steer the system from a given initial state to a desired final state at a specified final time is formulated in the framework of optimal control theory. Using the spectral filter technique, we show that the selected optimal field which induces a coherent population transfer between quantum states is represented by a carrier signal having a constant frequency but which is time-varied both in amplitude and phase. The sensitivity of the optimal solution to parameter perturbations is also addressed.
Superconducting field-effect transitor (SuFET) and Josephson field-effect transistor (JoFET) technologies take advantage of electric field induced control of charge carrier concentration in order to modulate the channel superconducting properties. De spite field-effect is believed to be unaffective for superconducting metals, recent experiments showed electric field dependent modulation of the critical current (IC) in a fully metallic transistor. Yet, the grounding mechanism of this phenomenon is not completely understood. Here, we show the experimental realization of Ti-based Dayem bridge field-effect transistors (DB-FETs) able to control IC of the superconducting channel. Our easy fabrication process DB-FETs show symmetric full suppression of IC for an applied critical gate voltage as low as VCG~+-8V at temperatures reaching about the 85% of the record critical temperature TC~550mK for titanium. The gate-independent TC and normal state resistance (RN) coupled with the increase of resistance in the supercoducting state (RS) for gate voltages close to the critical value (VCG) suggest the creation of field-effect induced metallic puddles in the superconducting sea. Our devices show extremely high values of transconductance (gMAXm~15uA/V at VG~+-6.5V) and variations of Josephson kinetic inductance (LK) with VG of two orders of magnitude. Therefore, the DB-FET appears as an ideal candidate for the realization of superconducting electronics, superconducting qubits, tunable interferometers as well as photon detectors.
Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices.
337 - Y. Kanai , R.S. Deacon , A. Oiwa 2009
We measure the non-dissipative supercurrent in a single InAs self-assembled quantum dot (QD) coupled to superconducting leads. The QD occupation is both tuned by a back-gate electrode and lateral side-gate. The geometry of the side-gate allows tuning of the QD-lead tunnel coupling in a region of constant electron number with appropriate orbital state. Using the side-gate effect we study the competition between Kondo correlations and superconducting pairing on the QD, observing a decrease in the supercurrent when the Kondo temperature is reduced below the superconducting energy gap in qualitative agreement with theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا