ﻻ يوجد ملخص باللغة العربية
Magnetic islands (MIs), resulting from a magnetic field reconnection, are ubiquitous structures in magnetized plasmas. In tokamak plasmas, recent researches suggested that the interaction between the MI and ambient turbulence can be important for the nonlinear MI evolution, but a lack of detailed experimental observations and analyses has prevented further understanding. Here, we provide comprehensive two-dimensional observations that indicate various effects of the ambient turbulence on the nonlinear MI evolution. It is shown that the modified plasma turbulence around the MI can lead to either destabilization or stabilization of the MI instability in tokamak plasmas. In particular, significantly enhanced turbulence at the X-point of the MI results in a violent disruption through the fast magnetic reconnection and magnetic field stochastization.
Boundary plasma physics plays an important role in tokamak confinement, but is difficult to simulate in a gyrokinetic code due to the scale-inseparable nonlocal multi-physics in magnetic separatrix and open magnetic field geometry. Neutral particles
Turbulence is a major factor limiting the achievement of better tokamak performance as it enhances the transport of particles, momentum and heat which hinders the foremost objective of tokamaks. Hence, understanding and possibly being able to control
We have used the local-$delta{f}$ gyrokinetic code GS2 to perform studies of the effect of flux-surface shaping on two highly-shaped, low- and high-$beta$ JT-60SA-relevant equilibria, including a successful benchmark with the GKV code. We find a nove
Several simulations of turbulence in the Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)] are energetically analyzed and compared with each other and with the experiment. The simulations use the same model, but differe
The self-consistent description of Langmuir wave and ion-sound wave turbulence in the presence of an electron beam is presented for inhomogeneous non-isothermal plasmas. Full numerical solutions of the complete set of kinetic equations for electrons,