ﻻ يوجد ملخص باللغة العربية
We present a study of six far-infrared fine structure lines in the z=4.225 lensed dusty star-forming galaxy SPT0418-47 to probe the physical conditions of its InterStellar Medium (ISM). In particular, we report Atacama Pathfinder EXperiment (APEX) detections of the [OI]145um and [OIII]88um lines and Atacama Compact Array (ACA) detections of the [NII]122 and 205um lines. The [OI]145um / [CII]158um line ratio is ~5x higher compared to the average of local galaxies. We interpret this as evidence that the ISM is dominated by photo-dissociation regions with high gas densities. The line ratios, and in particular those of [OIII]88um and [NII]122um imply that the ISM in SPT0418-47 is already chemically enriched close to solar metallicity. While the strong gravitational amplification was required to detect these lines with APEX, larger samples can be observed with the Atacama Large Millimeter/submillimeter Array (ALMA), and should allow to determine if the observed dense, solar metallicity ISM is common among these highly star-forming galaxies.
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy (DSFG) to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at $z=6.900 +/- 0.002$. SPT031
We present CO(J= 1-0; 3-2; 5-4; 10-9) and 1.2-kpc resolution [CII] line observations of the dusty star-forming galaxy (SFG) HXMM05 -- carried out with the Karl G. Jansky Very Large Array, the Combined Array for Research in Millimeter-wave Astronomy,
Recent estimates point to abundances of z > 4 sub-millimeter (sub-mm) galaxies far above model predictions. The matter is still debated. According to some analyses the excess may be substantially lower than initially thought and perhaps accounted for
We exploit the continuity equation approach and the `main sequence star-formation timescales to show that the observed high abundance of galaxies with stellar masses > a few 10^10 M_sun at redshift z>4 implies the existence of a galaxy population fea
We present observations of SPT-S J053816-5030.8, a gravitationally-lensed dusty star forming galaxy (DSFG) at z = 2.7817, first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by